Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 16 - 16
1 Feb 2018
Thorpe A Freeman C Farthing P Callaghan J Hatton P Brook I Sammon C Le Maitre C
Full Access

Background. We have reported an injectable L-pNIPAM-co-DMAc hydrogel with hydroxyaptite nanoparticles (HAPna) which promotes mesenchymal stem cell (MSC) differentiation to bone cells without the need for growth factors. This hydrogel could potentially be used as an osteogenic and osteoconductive bone filler of spinal cages to improve vertebral body fusion. Here we investigated the biocompatibility and efficacy of the hydrogel in vivo using a proof of concept femur defect model. Methods. Rat sub-cut analysis was performed to investigate safety in vivo. A rat femur defect model was performed to evaluate efficacy. Four groups were investigated: sham operated controls; acellular L-pNIPAM-co-DMAc hydrogel; acellular L-pNIPAM-co-DMAc hydrogel with HAPna; L-pNIPAM-co-DMAc hydrogel with rat MSCs and HAPna. Following 4 weeks, defect site and organs were histologically examined to determine integration, repair and inflammatory response, as well as Micro-CT to assess mineralisation. Results. No inflammatory reactions or toxicity were seen in any animal. Enhanced bone healing was observed in aged exbreeder female rats where hydrogel was injected with increased deposition of collagen type I. Integration of the hydrogel with surrounding bone was observed without the need for delivered MSCs; native cell infiltration was also seen and bone formation was observed within all hydrogel systems investigated. Conclusion. This novel hydrogel is biocompatible, facilitates migration of cells, promotes increased bone formation and integrates with surrounding bone. This system could be injected to fill spaces within and surrounding spinal cages to aid in cage fixation and spinal fusion without the need for harvesting of bone autografts, thus reducing operative risk and surgical cost. Conflicts of Interest: None. Source of Funding: BMRC, MERI Sheffield Hallam University


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 172 - 179
1 Feb 2023
Shimizu T Kato S Demura S Shinmura K Yokogawa N Kurokawa Y Yoshioka K Murakami H Kawahara N Tsuchiya H

Aims

The aim of this study was to investigate the incidence and characteristics of instrumentation failure (IF) after total en bloc spondylectomy (TES), and to analyze risk factors for IF.

Methods

The medical records from 136 patients (65 male, 71 female) with a mean age of 52.7 years (14 to 80) who underwent TES were retrospectively reviewed. The mean follow-up period was 101 months (36 to 232). Analyzed factors included incidence of IF, age, sex, BMI, history of chemotherapy or radiotherapy, tumour histology (primary or metastasis; benign or malignant), surgical approach (posterior or combined), tumour location (thoracic or lumbar; junctional or non-junctional), number of resected vertebrae (single or multilevel), anterior resection line (disc-to-disc or intravertebra), type of bone graft (autograft or frozen autograft), cage subsidence (CS), and local alignment (LA). A survival analysis of the instrumentation was performed, and relationships between IF and other factors were investigated using the Cox regression model.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 11 | Pages 1464 - 1468
1 Nov 2006
Anderson AJ Towns GM Chiverton N

Traumatic atlanto-occipital dislocation in adults is usually fatal and survival without neurological deficit is rare. The surgical management of those who do survive is difficult and controversial. Most authorities recommend posterior occipitoaxial fusion, but this compromises cervical rotation. We describe a case in which a patient with a traumatic atlanto-occipital disruption but no neurological deficit was treated by atlanto-occipital fusion using a new technique consisting of cancellous bone autografting supported by an occipital plate linked by rods to lateral mass screws in the atlas. The technique is described in detail. At one year the neck was stable, radiological fusion had been achieved, and atlantoaxial rotation preserved. The rationale behind this approach is discussed and the relevant literature reviewed. We recommend the technique for injuries of this type