The indications for cementless acetabular fixation have been broadened because our data supports the use of trabecular metal cups even when there's limited bleeding host bone contact. Trabecular metal augments have allowed us to use cementless cups when there is segmental loss of bone. Surgical Technique: The acetabular bed is prepared. If there is less medial bone stock than 2 mm, then morselised allograft is impacted by reverse reaming. When reaming is complete and less than 50% bleeding host bone is available for cup stabilization, then a trabecular metal cup is indicated. Trabecular augments are used if the trabecular cup trial is not stable, or if it is uncovered by 40% or more. The conventional augments come in different sizes to accommodate the diameter of the cup and the size of the defect. Larger defects are addressed with anterior and posterior column augments, and superior defects with figure of seven augments.
The indications for cementless acetabular fixation have been broadened because our data supports the use of trabecular metal cups even when there's limited bleeding host bone contact. Trabecular metal augments have allowed us to use cementless cups when there is segmental loss of bone. Surgical Technique: The acetabular bed is prepared. If there is less medial bone stock than 2mm, then morselised allograft is impacted by reverse reaming. When reaming is complete and less than 50% bleeding host bone is available for cup stabilisation, then a trabecular metal cup is indicated. Trabecular augments are used if the trabecular cup trial is not stable, or if it is uncovered by 40% or more. The conventional augments come in different sizes to accommodate the diameter of the cup and the size of the defect. Larger defects are addressed with anterior and posterior column augments, and superior defects with figure of seven augments.
The indications for cementless acetabular fixation have been broadened because our data supports the use of trabecular metal cups even when there's limited bleeding host bone contact. Trabecular metal augments have allowed us to use cementless cups when there is segmental loss of bone. Surgical Technique:. The acetabular bed is prepared. If there is less medial bone stock than 2mm, then morselised allograft is impacted by reverse reaming. When reaming is complete and less than 50% bleeding host bone is available for cup stabilization, then a trabecular metal cup is indicated. Trabecular augments are used if the trabecular cup trial is not stable, or if it is uncovered by 40% or more. The conventional augments come in different sizes to accommodate the diameter of the cup and the size of the defect. Larger defects are addressed with anterior and posterior column augments, and superior defects with figure of seven augments.
Uncemented acetabular component fixation remains the gold standard for managing various defects in the revision hip setting. Multiple series have demonstrated over 90% ten-year survivorship of these constructs. Modern “enhanced” metals such as trabecular tantalum and titanium continue to perform well and are growing in popularity. So called “jumbo” cups, diameters >=62mm in females and >=66mm in males have demonstrated excellent survivorship. Good bony support with viable bone and stable initial fixation is necessary for long-term success. It is unknown how much remaining bone is necessary for reliable ingrowth with modern enhanced metals. The location of the remaining bone is probably more important than the absolute amount remaining. Occasionally, the uncemented cup must be augmented with metal augments or even a so-called “cup cage” construct. Even in these situations, the uncemented cup remains the workhorse of revision THA due to its ingrowth potential and excellent track record.
The indications for cementless acetabular fixation have been broadened because our data supports the use of trabecular metal cups even when there's limited bleeding host bone contact. Trabecular metal augments have allowed us to use cementless cups when there is segmental loss of bone. Surgical Technique: The acetabular bed is prepared. If there is less medial bone stock than 2 mm, then morselised allograft is impacted by reverse reaming. When reaming is complete and less than 50% bleeding host bone is available for cup stabilization, then a trabecular metal cup is indicated. Trabecular augments are used if the trabecular cup trial is not stable, or if it is uncovered by 40% or more. The conventional augments come in different sizes to accommodate the diameter of the cup and the size of the defect. Larger defects are addressed with anterior and posterior column augments, and superior defects with figure of seven augments.
Uncemented acetabular component fixation remains the gold standard for managing various defects in the revision hip setting. Multiple series have demonstrated over 90% ten-year survivorship of these constructs. Modern “enhanced” metals such as trabecular tantalum and titanium continue to perform well and are growing in popularity. So called “jumbo” cups, diameters >=62mm in females and >=66mm in males have demonstrated excellent survivorship. Good bony support with viable bone and stable initial fixation is necessary for long-term success. It is unknown how much remaining bone is necessary for reliable ingrowth with modern enhanced metals. The location of the remaining bone is probably more important than the absolute amount remaining. Occasionally, the uncemented cup must be augmented with metal augments or even a so-called “cup cage” construct. Even in these situations, the uncemented cup remains the workhorse of revision THA due to its ingrowth potential and excellent track record.
The indications for cementless acetabular fixation have been broadened because our data supports the use of trabecular metal cups even when there's limited bleeding host bone contact. Trabecular metal augments have allowed us to use cementless cups when there is segmental loss of bone. Surgical Technique:. The acetabular bed is prepared. If there is less medial bone stock than 2 mm, then morsellised allograft is impacted by reverse reaming. When reaming is complete and less than 50% bleeding host bone is available for cup stabilisation, then a trabecular metal cup is indicated. Trabecular augments are used if the trabecular cup trial is not stable, or if it is uncovered by 40% or more. The conventional augments come in different sizes to accommodate the diameter of the cup and the size of the defect. Larger defects are addressed with anterior and posterior column augments, and superior defects with figure of seven augments.
Revision total knee arthroplasty (TKA) can be very complex in nature with difficulties/obstacles involving bone and soft tissue deficits, visualization and exposure, as well as alignment and fixation. Auxiliary devices such as augmentation and offset adapters help address these issues; however they increase the complexity of the reconstruction. The objective of this study was to show that use of a single radius revision TKA system allowing for minimal auxiliary revision devices can yield positive early clinical outcomes. This data was collected as part of a prospective, post-market, multicenter study. One hundred and twenty-five single radius revision TKA cases were evaluated. Surgical details were reviewed and cases were grouped based on type of auxiliary devices used. Group 1 included cases that used only femoral and/or tibial augments. Group 2 used femoral and/or tibial augments in conjunction with femoral and/or tibial offset adapters. Early clinical outcomes, operative data and radiographic findings were used to compare cases.Introduction:
Methods:
This paper presents an ongoing review of the use of a wedge-shaped porous metal augments in the shoulder to address glenoid retroversion as part of anatomical total shoulder arthroplasty (aTSA). Seventy-five shoulders in 66 patients (23 women and 43 men, aged 42 to 85 years) with Walch grade B2 or C glenoids underwent porous metal glenoid augment (PMGA) insertion as part of aTSA. Patients received either a 15º or 30º PMGA wedge (secured by screws to the native glenoid) to correct excessive glenoid retroversion before a standard glenoid component was implanted using bone cement. Neither patient-specific guides nor navigation were used. Patients were prospectively assessed using shoulder functional assessments (Oxford Shoulder Score [OSS], American Shoulder and Elbow Standardized Shoulder Assessment Form [ASES], visual analogue scale [VAS] pain scores and forward elevation [FE]) preoperatively, at three, six, and 12 months, and yearly thereafter, with similar radiological surveillance. Forty-nine consecutive series shoulders had a follow-up of greater than 24 months, with a median follow-up of 48 months (range: 24–87 months). Median outcome scores improved for OSS (21 to 44), ASES (24 to 92), VAS (7 to 0), and FE (90º to 140º). Four patients died, but no others were lost to follow-up. Apart from one infection at 18 months postoperatively and one minor peg perforation, there were no complications, hardware failures, implant displacements, significant lucency or posterior re-subluxations. Radiographs showed good incorporation of the wedge augment with correction of glenoid retroversion from median 22º (13º to 46º) to 4º. All but four glenoids were corrected to within the target range (less than 10º retroversion). The porous metal wedge-shaped augments effectively addressed posterior glenoid deficiency as part of aTSA for rotator cuff intact osteoarthritis, producing satisfactory clinical outcomes with no signs of impending future failure.
Failed ingrowth and subsequent separation of revision acetabular components from the inferior hemi-pelvis constitutes a primary mode of failure in revision total hip arthroplasty (THA). Few studies have highlighted other techniques than multiple screws and an ischial flange or hook of cages to reinforce the ischiopubic fixation of the acetabular components, nor did any authors report the use of porous metal augments in the ischium and/or pubis to reinforce ischiopubic fixation of the acetabular cup. The aims of this study were to introduce the concept of extended ischiopubic fixation into the ischium and/or pubis during revision total hip arthroplasty [Fig. 2], and to determine the early clinical outcomes and the radiographic outcomes of hips revised with inferior extended fixation. Patients who underwent revision THA utilizing the surgical technique of extended ischiopubic fixation with porous metal augments secured in the ischium and/or pubis in a single institution from 2014 to 2016 were reviewed. 16 patients were included based on the criteria of minimum 24 months clinical and radiographic follow-up. No patients were lost to follow-up. The median duration of follow-up for the overall population was 37.43 months. The patients' clinical results were assessed using the Harris Hip Score (HHS), Western Ontario and McMaster Universities Osteoarthritis (WOMAC) index and Short form (SF)-12 score and satisfaction level based on a scale with five levels at each office visit. All inpatient and outpatient records were examined for complications, including infection, intraoperative fracture, dislocation, postoperative nerve palsy, hematoma, wound complication and/or any subsequent reoperation(s). The vertical and horizontal distances of the center of rotation to the anatomic femoral head and the inclination and anteversion angle of the cup were measured on the preoperative and postoperative radiographs. All the postoperative plain radiographs were reviewed to assess the stability of the components.Background
Methods
Severe, superior acetabular bone defects are one of the most challenging aspects to revision total hip arthroplasty (THA). We propose a new concept of “superior extended fixation” as fixation extending superiorly 2 cm beyond the original acetabulum rim with porous metal augments, which is further classified into intracavitary and extracavitary fixation. We hypothesized that this new concept would improve the radiographic and clinical outcomes in patients with massive superior acetabular bone defects. Twenty eight revision THA patients were retrospectively reviewed who underwent reconstruction with the concept of superior extended fixation from 2014 to 2016 in our hospital. Patients were assessed using the Harris Hip Score (HHS) and the Western Ontario and McMaster Universities Osteoarthritis Index score (WOMAC). In addition, radiographs were assessed and patient reported satisfaction was collected.Aims
Patients and Methods
Major bone loss involving the acetabulum can be seen during revision THA due to component loosening, migration or osteolysis and can also occur as a sequela of infected THA. Uncemented porous ingrowth components can be used for reconstruction of the vast majority of revision cases, where smaller segmental or cavitary defects are typically present. But when stable structural support on host bone is lacking, highly porous metal acetabular augments have been described as an alternative to large structural allograft. The fundamental concept behind these acetabular augments is the provision of critical additional fixation, structural support and increased contact area against host bone over the weeks following surgery while the desired ingrowth into porous implant surfaces is occurring. Three separate patterns of augment placement have been utilised in our practice since the development of these implants a decade ago: Type 1 - augment screwed onto the superolateral acetabular rim in a “flying buttress” configuration for treatment of a segmental rim defect, Type 2 – augment placed superiorly against host and then fixed to the acetabular component adjacent to the cup to fill a mainly elliptical cavitary defect, and Type 3 – augment(s) placed medial to the cup to fill a protrusio type cavitary or combined cavitary segmental defect of the superomedial or medial wall, and allow peripheral cup placement against the still intact acetabular rim. In all cases the acetabular component and augment interface is fixed together with cement, with care to prevent any cement extrusion between any implant and the bone. When possible, we now prefer to place the acetabular component first and fix it provisionally with 2 or more screws, and then place the augments second as this is technically quicker and easier. This order of insertion is only possible in type 1 and a few select type 2 cases. Type 3 cases always require placement of one or more augments first, before cup insertion. Supplemental cancellous bone graft is used routinely, but the need for structural bone is avoided. From 2000 through 2007, porous tantalum acetabular augments were used very selectively in 85 revision THA procedures out of total of the 1,789 revision hip cases performed at our institution. All cases had associated massive acetabular deficiency precluding stable mechanical support for a cup alone. Fifty-eight hips had complete radiographic and clinical follow at minimum 5 years. The majority of patients had either Paprosky type 3A defects (28/58, 48%) or 3B defects (22/58, 38%). Ten out of 58 had pre-operative pelvic discontinuities. Three separate patterns of augment placement were utilised: Type 1 - augment screwed onto the superolateral acetabular rim (21%), Type 2 – augment fixed to the acetabular component adjacent to the cup to fill a mainly elliptical cavitary defect (34%), and Type 3 – augment(s) placed medial to the cup to fill a protrusio type cavitary or combined cavitary segmental defect of the superomedial medial wall (45%). At 5 years, 2/58 (3%) were revised for aseptic loosening and another 6/58 demonstrated incomplete radiolucencies between the acetabular shell and zone 3. One of the revised cups and 5 of 6 of the cups with radiolucencies had an associated pelvic discontinuity. Highly porous metal acetabular augments are an infrequently needed, but extremely valuable, versatile and reliable adjunctive fixation method for use with uncemented acetabular components during complex revision THA associated with major bone deficiency. Smaller patients are more likely to require this approach as reaming away defects to allow insertion of a jumbo cup is more difficult with a smaller AP dimension to the acetabular columns and less local bone for implant support. Intermediate term durability and apparent radiographic incorporation has been very good despite the complex reconstructions originally required. This technique can allow the avoidance of structural bone grafting for even the most massive of bone defect problems, but additional followup is needed to see how durable these encouraging results are over the longer term.
Major bone loss involving the acetabulum can be seen during revision THA due to component loosening, migration or osteolysis and can also occur as a sequela of infected THA. Uncemented porous ingrowth components can be used for reconstruction of the vast majority of revision cases, where smaller segmental or cavitary defects are typically present. But when stable structural support on host bone is lacking, highly porous metal acetabular augments have been described as an alternative to large structural allograft, avoiding the potential for later graft resorption and the resulting loss of mechanical support that can follow. The fundamental concept behind these acetabular augments is the provision of critical additional fixation, structural support and increased contact area against host bone over the weeks following surgery while the desired ingrowth into porous implant surfaces is occurring. Technique: Three separate patterns of augment placement have been utilised in our practice since the development of these implants: Type 1 - augment screwed onto the superolateral acetabular rim in a “flying buttress” configuration for treatment of a segmental rim defect, Type 2 – augment placed superiorly against host and then fixed (with cement) to the acetabular component adjacent to the cup to fill a mainly elliptical cavitary defect, and Type 3 – augment(s) placed medial to the cup to fill a protrusio type cavitary or combined cavitary segmental defect of the superomedial or medial wall, and allow peripheral cup placement against the still intact acetabular rim. In all cases the acetabular component and augment interface is fixed together with cement, with care to prevent any cement extrusion between any implant and the bone. When possible, we now prefer to place the acetabular component first and fix it provisionally with 2 or more screws, and then place the augments second as this is technically quicker and easier. This order of insertion is only possible though in type 1 and a few select type 2 cases. Type 3 cases always require placement of one or more augments first, before cup insertion. Supplemental cancellous bone graft is used routinely. Results: From 2000 through 2007, porous tantalum acetabular augments were used very selectively in 85 revision THA procedures out of total of 1,789 revision hip cases performed at our institution in that time frame. All cases had associated massive acetabular deficiency precluding stable mechanical support for a cup alone. Fifty-eight hips had complete radiographic as well as clinical follow at minimum 5 years. The majority of patients had either Paprosky type 3A defects (28/58, 48%) or 3B defects (22/58, 38%). Ten out of 58 had pre-operative pelvic discontinuities. At 5 years, 2/58 (3%) were revised for aseptic loosening and another 6/58 demonstrated incomplete radiolucencies between the acetabular shell and zone 3. One of the revised cups and 5 of 6 of the cups with radiolucencies had an associated pelvic discontinuity. Summary: Highly porous metal acetabular augments are an infrequently needed, but extremely valuable, versatile and reliable adjunctive fixation method for use with uncemented acetabular components during complex revision THA associated with major bone deficiency. Intermediate term durability and apparent radiographic incorporation has been very good despite the complex reconstructions originally required. This technique can allow the avoidance of structural bone grafting for even the most massive of bone defect problems, but additional followup is needed to see how durable these encouraging results are over the longer term.
Although total hip arthroplasty is highly successful for treatment of osteoarthrosis of hip joint, it is skill demanding surgery to perform and even more challenging in case of revision with bone defects. There are many options available for reconstruction of acetabular bony defects. Here, we evaluate the outcome of acetabular bony defect reconstructed with trabecular metal augments in short term. We performed, 22 revision total hip arthroplasties and 6 primary total hip arthroplasties (total 28 in 28 patients) using trabecular metal augments to reconstruct acetabular defect between 2011 to 2015. Out of these 28 patients, 18 were males and 10 were females. Mean age of these patients was 61.2 years (range: 46 years to 79 years). Pre-operative templating was done for all cases and need for trabecular metal augments was anticipated in all cases. All cases were classified according to Paprosky classification for acetabular bone defects. Out of 28 patients, 3 had type 2B, 1 had type 2C, 18 had type 3A and 6 had type 3B acetabular defects. Post operatively, all patients were followed at regular interval for their clinical and radiological outcome. An average follow up was 20.1 months (range: 6 months to 42.5 months). We assessed clinical outcome in the form of Herris hip score (HHS) and radiological outcomes in form of osteolysis in acetabular zones and osseointegration, according to the criteria of Moore. The average Harris hip score (HHS) was improved from 58.0 preoperatively to 87.2 postoperatively. The average degree of cup abduction at the final follow up was 44.29. The centre of rotation of the hip joint was corrected from average 38.90mm (range: 22.15mm to 66.35mm) above the inter-teardrop line preoperatively to average 23.85mm (range: 11.82mm to 37.69mm) above the inter-teardrop line postoperatively. Out of 28 patients, 18 patients had three or more signs of osseointegration, according to the criteria of Moore, at the time of final follow up. Rest of patients, had one or two signs of osseointegration (5 patients had one sign and 5 patients had two signs). We had no patient with migration or loosening of acetabular components. No patient has osteolysis of acetabulum in any zone. Trabecular metal augments provide good initial stability to acetabular cup as well as helpful to bring down the centre of rotation of the hip joint within limit of 35mm above the inter-teardrop line. They also facilitate osseointegration. Our study showed that the results of the trabecular metal augments in reconstruction of acetabular bony defects were successful even in short term. However, long term study is required for better evaluation.
Highly porous metal surfaces have transformed acetabular revision surgery by providing (1) enhanced friction which potentially provides greater primary fixation, (2) enhanced bone ingrowth potential, (3) enhanced screw fixation options. These characteristics have led many surgeons to use these devices routinely in acetabular revision and have led to an expansion of the indications for porous uncemented hemispherical cups in acetabular revision. Mid-term results suggest that the historical indications for hemispherical cups in revision surgery can be moderately expanded with some implants with these characteristics. In a recent study of 3448 revision total hip arthroplasties, we found porous tantalum cups had a statistically lower revision rate than other materials/designs. Highly porous metals also have provided the options of metal augments to fill selected bone defects—which can both enhance cup fixation and manage bone loss simultaneously. A number of different highly porous metals are now available, and how each will perform is not yet known.
Major bone loss involving the acetabulum can be seen during revision THA due to component loosening, migration or osteolysis and can also occur as a sequela of infected THA. Uncemented porous ingrowth components can be used for reconstruction of the vast majority of revision cases, where smaller segmental or cavitary defects are typically present. But when stable structural support on host bone is lacking, highly porous metal acetabular augments have been described as an alternative to large structural allograft, avoiding the potential for later graft resorption and the resulting loss of mechanical support that can follow. The fundamental concept behind these acetabular augments is the provision of critical additional fixation, structural support and increased contact area against host bone over the weeks following surgery while the desired ingrowth into porous implant surfaces is occurring. Three separate patterns of augment placement have been utilised in our practice since the development of these implants a decade ago: Type 1 – augment screwed onto the superolateral acetabular rim in a “flying buttress” configuration for treatment of a segmental rim defect, Type 2 – augment placed superiorly against host and then fixed (with cement) to the acetabular component adjacent to the cup to fill a mainly elliptical cavitary defect, and Type 3 – augment(s) placed medial to the cup to fill a protrusio type cavitary or combined cavitary segmental defect of the superomedial or medial wall, and allow peripheral cup placement against the still intact acetabular rim. In all cases the acetabular component and augment interface is fixed together with cement, with care to prevent any cement extrusion between any implant and the bone. When possible, we now prefer to place the acetabular component first and fix it provisionally with 2 or more screws, and then place the augments second as this is technically quicker and easier. This order of insertion is only possible though in type 1 and a few select type 2 cases. Type 3 cases always require placement of one or more augments first, before cup insertion. Supplemental cancellous bone graft is used routinely, but the need for structural bone is avoided. Highly porous metal acetabular augments are an infrequently needed, but extremely valuable, versatile and reliable adjunctive fixation method for use with uncemented acetabular components during complex revision THA associated with major bone deficiency. Smaller (often female) patients are more likely to require this approach as reaming away defects to allow insertion of a jumbo cup is more difficult in small patients with a smaller AP dimension to the acetabular columns and less local bone for implant support. Intermediate term durability and apparent radiographic incorporation has been very good despite the complex reconstructions originally required. This technique can allow the avoidance of structural bone grafting for even the most massive of bone defect problems, but additional followup is needed to see how durable these encouraging results are over the longer term.
Segmental defects of the acetabulum are often encountered in revision surgery. Many times these can be handled with hemispherical cups. However when larger defects are encountered particularly involving the dome and/or posterior wall structural support for the cup is often needed. In the past structural allograft was used but for the last 12 years at our institution trabecular metal augments have been used in the place of structural allograft in all cases. This talk will focus on technique and mid-term results using augments in association with an uncemented revision shell. The technique can be broken down into 6 steps outlined below: 1. Exposure, 2. Reaming, 3. Trialing, 4. Augment Inserted, 5. Cup Insertion/Stabilization, 6. Trial Reduction/Liner Cementation A recent study was undertaken to assess the mid-term results of this technique. We prospectively followed the first 56 patients in whom these augments were utilised in combination with a trabecular metal acetabular component in our unit. Details of this study will be presented. The median follow up of the surviving patients was 110 months (range 88–128 months). Survivorship of the augments at 10 years was 92.2% (95% CI: 97.0–80.5%). In one case the augment was revised for infection and in 3 for loosening. In 1 of the revised cases there was a pre-operative pelvic discontinuity, the other 2 discontinuities in the series were not revised and remain asymptomatic. The results of the acetabular trabecular metal augments continue to be encouraging in the medium to long term with low rates of revision or loosening in this complex group of patients.Conclusions
Acetabular bone loss during revision total hip arthroplasty (THA) poses a challenge for reconstruction as segmental and extensive cavitary defects require structural support to achieve prosthesis stability. Trabecular metal (TM) acetabular augments structurally support hemispherical cups. Positive short-term results have been encouraging, but mid- to long-term results are largely unknown. The purpose of this study was to determine the continued efficacy of TM augments in THA revisions with significant pelvic bone loss. Radiographs and medical records of 51 patients who had undergone THA revision with the use of a TM augment were retrospectively reviewed. Acetabular defects were graded according to the Paprosky classification of acetabular deficiencies based on preoperative radiographs and operative findings. Loosening was defined radiographically as a gross change in cup position, change in the abduction angle (>5°), or change in the vertical position of the acetabular component (>8 mm) between initial postoperative and most recent follow-up radiographs (Figure 1).Purpose:
Methods:
Internal fixation of fractures in the presence of osteopenia has been associated with a failure rate as high as 25%. Enhancing bone formation and osseointegration of orthopaedic hardware is a priority when treating patients with impaired bone regenerative capacity. Fibroblast Growth Factor (FGF) 18 regulates skeletal development and could therefore have applications in implant integration. This study was designed to determine if FGF 18 promotes bone formation and osseointegration in the osteopenic FGFR3−/− mouse and to examine its effect on bone marrow derived mesenchymal stem cells (MSCs). In Vivo: Intramedullary implants were fabricated from 0.4 × 10mm nylon rods coated with 300nm of titanium by physical vapour deposition. Skeletally mature, age matched female FGFR3−/− and wild type mice received bilateral intramedullary femoral implants. Left femurs received an intramedullary injection of 0.1μg of FGF 18 (Merck Serono), and right femurs received saline only. Six weeks later, femurs were harvested, radiographed, scanned by micro CT, and processed for undecalcified for histology. In Vitro: MSCs were harvested from femurs and tibiae of skeletally mature age matched FGFR3−/− and wild type mice. Cells were cultured in Alpha Modified Eagles Medium (αMEM) to monitor proliferation or αMEM supplemented with ascorbic acid and sodium beta-glycerophosphate to monitor differentiation. Proliferation was assessed through cell counts and metabolic activity at days 3, 6 and 9. Differentiation was assessed through staining for osteoblasts and mineral deposition at days 6, 9 and 12.Purpose
Method
Reconstructing acetabular defects in revision hip arthroplasty can be challenging. Small, contained defects can be successfully reconstructed with porous-coated cups without bone grafts. With larger uncontained defects, a cementless cup even with screws, will not engage with sufficient host bone to provide enough stability. Porous titanium augments were originally designed to be used with cementless porous titanium cups, and there is a scarcity of literature on their usage in cemented cups with bone grafting. We retrospectively reviewed five hips (four patients – 3 women, 1 man; mean age 65 years) in which we reconstructed the acetabulum with a titanium augment (Biomet, IN, USA) as a support for impaction bone grafting and cemented acetabular cups (Figure 1). All defects were classified according to Paprosky classification. Radiographic signs of osseointegration were graded according to Moore grading. Quality of life was measured with the Oxford Hip Score.Introduction
Methods