Objectives.
Meniscal root tears can result from traumatic injury to the knee or gradual degeneration. When the root is injured, the meniscus becomes de-functioned, resulting in abnormal distribution of hoop stresses, extrusion of the meniscus, and altered knee kinematics. If left untreated, this can cause
Introduction. Post-meniscectomy syndrome is broadly characterised by intractable pain following the partial or total removal of a meniscus. There is a large treatment gap between the first knee pain after meniscectomy and the eligibility for a TKA. Hence, there is a strong unmet need for a solution that will relieve this post-meniscectomy pain. Goal of this first-in-man study was to evaluate the safety and performance of an anatomically shaped artificial medial meniscus prosthesis and the accompanying surgical technique. Methods. A first-in-man, prospective, multi-centre, single arm clinical investigation was intended to be performed on 18 post-medial meniscectomy syndrome patients with limited underlying cartilage damage (Kellgren Lawrence scale 0–3) in the medial compartment and having a normal lateral compartment. Eventually 5 patients received a polycarbonate urethane mediale meniscus prosthesis (Trammpolin® medial meniscus prosthesis; ATRO Medical B.V., the Netherlands) which was clicked onto two titanium screws fixated at the native horn attachments on the tibia. PROMs were collected at baseline and at 6 weeks, 3, 6, 12 and 24 months following the intervention including X-rays at 6, 12 and 24 Months. MRI scans were repeated after 12 and 24 months. Results. The surgical technique to select the appropriately sized implant and correct positioning of the fixation screws and meniscus prosthesis onto the tibia was demonstrated feasible and reproducible. The surgeries showed that in particular the positioning of the posterior screw is crucial for correct positioning of the prosthesis. Inclusion stopped after 5 patients, who reached the 6 months evaluation. The PROMs did not improve in the first 6 months after surgery. All patients reported knee joint stiffness and slight effusion in their knee at 6 months follow-up. In case of symptomatic patients an evaluation of the device position and integrity was performed by MRI. In three patients the implants were removed because of implant failure and in one patient the implant was removed because of persistent pain and extension deficit. At present one patient has the implant still in situ. The explantations of the implants demonstrated no
Aberrant infrapatellar fat metabolism is a notable feature provoking inflammation and fibrosis in the progression of osteoarthritis (OA). Irisin, a secretory subunit of fibronectin type III domain containing 5 (FNDC5) regulate adipose morphogenesis, energy expenditure, skeletal muscle, and bone metabolism. This study aims to characterize the biological roles of Irisin signaling in an infrapatellar fat formation and OA development. Injured articular specimens were harvested from 19 patients with end-stage knee OA and 11 patients with the femoral neck fracture. Knee joints in mice that overexpressed Irisin were subjected to intra-articular injection of collagenase to provoke OA. Expressions of Irisin, adipokines, and MMPs probed with RT-quantitative PCR. Infrapatellar adiposity,
The zonal organization of articular cartilage is crucial in providing the tissue with mechanical properties to withstand compression and shearing force. Current treatments available for
Background. Cam-type femoro-acetabular impingement (FAI) is increasingly recognised as a cause of mechanical hip symptoms in young adults. It is likely that it is a cause of early hip degeneration. Ganz et al have developed a therapeutic procedure involving trochanteric flip osteotomy and dislocation of the hip, and have reported good results. We have developed an arthroscopic osteochondroplasty to reshape the proximal femur and relieve impingement. Methods. Fifty patients who presented with mechanical hip symptoms and had demonstrable cam-type FAI on radially-reconstructed MR arthrography, were treated by arthroscopic osteochondroplasty. Ten patients had a post-operative CT; from these images flexion and internal rotation range was tested in a virtual reality (VR) model to determine adequacy of resection. All patients were followed up for a minimum of one year, and post-operative Non-Arthritic Hip Scores (NAHS, maximum possible score 100) compared with pre-operative NAHS. Results. Mean operating time was 110 minutes. 31 patients were discharged on the day of surgery, the remainder on the following day. There were no complications. All patients were asked to be partially weight-bearing with crutches for four weeks but most returned to work within two weeks. The VR models showed satisfactory resection, although there was clear evidence of improved precision with practice. Symptoms improved in all but two patients, with mean NAHS improving from 54 pre-operatively to 87 at one year. The two patients who did not improve, were both found to have unexpectedly extensive acetabular
Chondral damage within the knee commonly occurs during sport following direct trauma or following degeneration through overuse. Radio frequency energy chondroplasty (RFC) can be used as an alternative to mechanical chondroplasty in the arthroscopic treatment of chondral lesions. Current literature supports the theoretical advantage of RFC and purports to in vitro improvements in cartilage structure and function following RFC. We conducted a retrospective study of patients undergoing RFC for isolated chondral lesions in the knee and assessed the short term clinical benefits. Retrospective analysis was completed of operative notes and arthroscopic images of all patients who underwent arthroscopic chondroplasty at the royal Devon and Exeter Hospital between January 2009 and June 2012. Inclusion criteria included 1 to 2 defined chondral lesions, less than 2cm2, of Outerbridge grade II-IV, treated via arthroscopic RFC. Exclusion criteria included diffuse
Hyaline articular cartilage has been known to
be a troublesome tissue to repair once damaged. Since the introduction
of autologous chondrocyte implantation (ACI) in 1994, a renewed
interest in the field of cartilage repair with new repair techniques
and the hope for products that are regenerative have blossomed.
This article reviews the basic science structure and function of
articular cartilage, and techniques that are presently available
to effect repair and their expected outcomes.