Over the last decades, biodegradable metals emerged as promising materials for various biomedical implant applications, aiming to reduce the use of permanent metallic implants and, therefore, to avoid additional surgeries for implant removal. However, among the important issue to be solved is their fast corrosion - too high to match the healing rate of the bone tissue. The most effective way to improve this characteristic is to coat biodegradable metals with substituted calcium phosphates. Tricalcium phosphate (β-TCP) is a resorbable bioceramic widely used as synthetic bone graft. In order to modulate and enhance its biological performance, the substitution of Ca2+ by various metal ions, such as strontium (Sr2+), magnesium (Mg2+), iron (Fe2+) etc., can be carried out. Among them, copper (Cu2+), manganese (Mn2+), zinc (Zn2+) etc. could add
Abstract. 3D printing of synthetic scaffolds mimicking natural bone chemical composition, structure, and mechanical properties is a promising approach for repairing bone injuries. Direct ink writing (DIW), a type of 3D printing, confers compatibility with a wide range of materials without exposing these materials to extreme heat. Optimizing ink properties such as filament formation capabilities, shear-thinning, and high storage modulus recovery would improve DIW fabrication characteristics. In this study, composite inks based on biodegradable polycaprolactone (PCL), reinforced with nano-hydroxyapatite (HAp), and loaded with vancomycin were designed and evaluated for their rheological properties, wettability, mechanical
Introduction. Despite the implementation of numerous preventive measures in recent years, the persistent challenge of periprosthetic infections remains. Among the various strategies, metallic modification of implants, particularly with silver, has emerged as a promising avenue. Silver's
Uncemented implants combining
Objectives. The surface of pure titanium (Ti) shows decreased histocompatibility over time; this phenomenon is known as biological ageing. UV irradiation enables the reversal of biological ageing through photofunctionalisation, a physicochemical alteration of the titanium surface. Ti implants are sterilised by UV irradiation in dental surgery. However, orthopaedic biomaterials are usually composed of the alloy Ti6Al4V, for which the antibacterial effects of UV irradiation are unconfirmed. Here we evaluated the bactericidal and antimicrobial effects of treating Ti and Ti6Al4V with UV irradiation of a lower and briefer dose than previously reported, for applications in implant surgery. Materials and Methods. Ti and Ti6Al4V disks were prepared. To evaluate the bactericidal effect of UV irradiation, Staphylococcus aureus 834 suspension was seeded onto the disks, which were then exposed to UV light for 15 minutes at a dose of 9 J/cm. 2. To evaluate the antimicrobial activity of UV irradiation, bacterial suspensions were seeded onto the disks 0, 0.5, one, six, 24 and 48 hours, and three and seven days after UV irradiation as described above. In both experiments, the bacteria were then harvested, cultured, and the number of colonies were counted. Results. No colonies were observed when UV irradiation was performed after the bacteria were added to the disks. When the bacteria were seeded after UV irradiation, the amount of surviving bacteria on the Ti and Ti6Al4V disks decreased at 0 hours and then gradually increased. However, the antimicrobial activity was maintained for seven days after UV irradiation. Conclusion. Antimicrobial activity was induced for seven days after UV irradiation on both types of disk. Irradiated Ti6Al4V and Ti had similar
Post-surgical infections are still one of the most frequent adverse events in the prosthetic surgery. PMMA-based cements are widely employed in orthopaedic surgery as filler or prosthetic fixing device. The main problems associated with this material are poor bone integration and infection development. Aiming to avoid bacterial adhesion and to extend the longevity of implants, different solutions were proposed, both in terms of operative procedures and new materials development. Regarding the materials advancement, innovative PMMA-based composite bone cements, contemporaneously bioactive and antibacterial (without the use of antibiotics), were developed. The composites are based on a PMMA matrix containing a bioactive glass, doped with antibacterial ions (Ag+ or Cu++); so, the same filler shows at the same time the ability of promoting bone ingrowth and an antibacterial effect. Composite cements were characterized in terms of morphology and composition, curing parameters and mechanical properties; in vitro tests were performed to verify the material ability to release antibacterial ions and to promote the precipitation of hydroxyapatite. Moreover, cytotoxicity and
Platelet-rich plasma is a new inductive therapy which is being increasingly used for the treatment of the complications of bone healing, such as infection and nonunion. The activator for platelet-rich plasma is a mixture of thrombin and calcium chloride which produces a platelet-rich gel. We analysed the antibacterial effect of platelet-rich gel in vitro by using the platelet-rich plasma samples of 20 volunteers. In vitro laboratory susceptibility to platelet-rich gel was determined by the Kirby-Bauer disc-diffusion method. Baseline antimicrobial activity was assessed by measuring the zones of inhibition on agar plates coated with selected bacterial strains. Zones of inhibition produced by platelet-rich gel ranged between 6 mm and 24 mm (mean 9.83 mm) in diameter. Platelet-rich gel inhibited the growth of Staphylococcus aureus and was also active against Escherichia coli. There was no activity against Klebsiella pneumoniae, Enterococcus faecalis, and Pseudomonas aeruginosa. Moreover, platelet-rich gel seemed to induce the in vitro growth of Ps. aeruginosa, suggesting that it may cause an exacerbation of infections with this organism. We believe that a combination of the inductive and
Summary. The two-step labeling protocol using Lysostaphin and bio-orthogonal click chemistry for staining bacteria is described. The click protocol is efficient in labeling staphylococci and is non-toxic. This protocol promises the efficient of infections that are difficult to assess by conventional imaging. Introduction. Infection diagnostics in clinics is time consuming, invasive and relays on microbiological cultures. New probes and labeling protocols enabling rapid and specific detection of infection in vivo shall improve the situation. We investigated the potential of a new click labeling protocol to detect staphylococci. Azido (N3) - modified Lysostaphin and DIBO (Di-benzocyclooctyne) - dye were used in the two-step bacteria-labeling protocol. N3 and DIBO were the counterparts of the bioorthogonal “click” reaction. In the first step, Lysostaphin-N3 bound to Staphylococcus aureus. In the second step, N3 clicked to DIBO thus achieving S. aureus selective labeling. Methods. S. aureus NCTC 10788 and E. coli NCTC 12241 (from National Collection of Type Cultures), primary sheep osteoblasts and C57BL/6 mice were used for this study. DIBO-Alexa488 (Invitrogen ®), DyeLight488 (Thermofisher ®), NHS-N3 (Lumiprobe ®), Lysostaphin (Sigma-Aldrich ®) were purchased. In vitro we used standard microbiological protocols to assess antimicrobial and labeling activity of the “click” probe (Lysostaphin-N3 plus DIBO-dye), one-step-labeled Lysostaphin-Dye and non-labeled Lysostaphin. Flow cytometry, Fluorescence microscopy, and Spectrophotometry were employed to measure binding of the probes to bacteria. The cytotoxicity of the probes on osteoblasts was performed using Presto Blue Cell Viability test (Invitrogen ®). In vivo we used Fluorescence Intravital Microscopy and mice with dorsal skin-fold chambers (approved by the local governmental animal care committee). Subsequently to anesthesia each mouse received S. aureus strain Cowan I intravenously. This was followed by intravenous injections of the test probes. Results. Lysostaphin-N3 partially lost its
Summary Statement. A single, locally-delivered injection of a human placental product containing multipotent stromal cells reduced severity of infection in an immunosuppressed murine osteomyelitis model and eliminated infection in 25% of animals compared with 0% of controls without the use of antibiotics. Introduction. Implant–associated osteomyelitis is a serious orthopaedic condition and is particularly difficult to treat in immunosuppressed individuals. Despite great advancement in the field of biomaterials and pharmaceuticals, emerging patterns of antibiotic resistance, complex biofilm production and penetration of therapeutic concentrations of effective antibiotics into bone continue to represent unmet clinical challenges. The promise of adult multipotent stromal cells (MSCs) for tissue regeneration has been of intense interest in recent years. Among their many potential therapeutic uses, MSCs have also been shown to have direct
Platelet-leucocyte gel (PLG), a new biotechnological blood product, has hitherto been used primarily to treat chronic ulcers and to promote soft-tissue and bone regeneration in a wide range of medical fields. In this study, the antimicrobial efficacy of PLG against Staphylococcus aureus (ATCC 25923) was investigated in a rabbit model of osteomyelitis. Autologous PLG was injected into the tibial canal after inoculation with Staph. aureus. The prophylactic efficacy of PLG was evaluated by microbiological, radiological and histological examination. Animal groups included a treatment group that received systemic cefazolin and a control group that received no treatment. Treatment with PLG or cefazolin significantly reduced radiological and histological severity scores compared to the control group. This result was confirmed by a significant reduction in the infection rate and the number of viable bacteria. Although not comparable to cefazolin, PLG exhibited antimicrobial efficacy in vivo and therefore represents a novel strategy to prevent bone infection in humans.