Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Bone & Joint Research
Vol. 6, Issue 2 | Pages 108 - 112
1 Feb 2017
Itabashi T Narita K Ono A Wada K Tanaka T Kumagai G Yamauchi R Nakane A Ishibashi Y

Objectives. The surface of pure titanium (Ti) shows decreased histocompatibility over time; this phenomenon is known as biological ageing. UV irradiation enables the reversal of biological ageing through photofunctionalisation, a physicochemical alteration of the titanium surface. Ti implants are sterilised by UV irradiation in dental surgery. However, orthopaedic biomaterials are usually composed of the alloy Ti6Al4V, for which the antibacterial effects of UV irradiation are unconfirmed. Here we evaluated the bactericidal and antimicrobial effects of treating Ti and Ti6Al4V with UV irradiation of a lower and briefer dose than previously reported, for applications in implant surgery. Materials and Methods. Ti and Ti6Al4V disks were prepared. To evaluate the bactericidal effect of UV irradiation, Staphylococcus aureus 834 suspension was seeded onto the disks, which were then exposed to UV light for 15 minutes at a dose of 9 J/cm. 2. To evaluate the antimicrobial activity of UV irradiation, bacterial suspensions were seeded onto the disks 0, 0.5, one, six, 24 and 48 hours, and three and seven days after UV irradiation as described above. In both experiments, the bacteria were then harvested, cultured, and the number of colonies were counted. Results. No colonies were observed when UV irradiation was performed after the bacteria were added to the disks. When the bacteria were seeded after UV irradiation, the amount of surviving bacteria on the Ti and Ti6Al4V disks decreased at 0 hours and then gradually increased. However, the antimicrobial activity was maintained for seven days after UV irradiation. Conclusion. Antimicrobial activity was induced for seven days after UV irradiation on both types of disk. Irradiated Ti6Al4V and Ti had similar antimicrobial properties. Cite this article: T. Itabashi, K. Narita, A. Ono, K. Wada, T. Tanaka, G. Kumagai, R. Yamauchi, A. Nakane, Y. Ishibashi. Bactericidal and antimicrobial effects of pure titanium and titanium alloy treated with short-term, low-energy UV irradiation. Bone Joint Res 2017;6:108–112. DOI: 10.1302/2046-3758.62.2000619


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 1 | Pages 126 - 130
1 Jan 2011
Bruins MJ Zwiers JH Verheyen CCPM Wolfhagen MJHM

Aspiration arthrography using an iodinated contrast medium is a useful tool for the investigation of septic or aseptic loosening of arthroplasties and of septic arthritis. Previously, the contrast media have been thought to cause false negative results in cultures when present in aspirated samples of synovial fluid, probably because free iodine is bactericidal, but reports have been inconclusive.

We examined the influence of the older, high osmolar contrast agents and the low osmolar media used currently on the growth of ten different micro-organisms capable of causing deep infection around a prosthesis. Five media were tested, using a disc diffusion technique and a time-killing curve method in which high and low inocula of micro-organisms were incubated in undiluted media. The only bactericidal effects were found with low inocula of Escherichia coli and Pseudomonas aeruginosa in ioxithalamate, one of the older ionic media.

The low and iso-osmolar iodinated contrast media used currently do not impede culture. Future study must assess other causes of false negative cultures of synovial fluid and new developments in enhancing microbial recovery from aspirated samples.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 33 - 33
1 Dec 2020
Diez-Escudero A Andersson BM Järhult JD Hailer NP
Full Access

Uncemented implants combining antimicrobial properties with osteoconductivity would be highly desirable in revision surgery due to periprosthetic joint infection (PJI). Silver coatings convey antibacterial properties, however, at the cost of toxicity towards osteoblasts. On the other hand, topological modifications such as increased surface roughness or porosity support osseointregation but simultaneously lead to enhanced bacterial colonization. In this study, we investigated the antibacterial and osteoconductive properties of silver-coated porous titanium (Ti) alloys manufactured by electron beam melting, rendering a macrostructure that mimics trabecular bone. Trabecular implants with silver coating (TR-Ag) or without coating (TR) were compared to grit-blasted Ti6Al4V (GB) and glass cover slips as internal controls. Physicochemical characterization was performed by X-ray diffraction (XRD) and energy dispersive X-rays (EDX) together with morphological characterization through electron scanning microscopy (SEM). Bacterial adherence after incubation of samples with Staphylococcus (S.) aureus and S. epidermidis strains harvested from PJI patients was quantitatively assessed by viable count after detachment of adherent bacteria by collagenase/dispase treatment. Primary human osteoblasts (hOB) were used to investigate the osteoconductive potential by lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) activity. Cell morphology was investigated by fluorescence microscopy after staining with carboxifluorescein diacetate succinimidyl ester (CFDA-SE) and 4′,6-diamidino-2-phenylindole (DAPI). The trabecular implants depicted a porosity of 70% with pore sizes of 600µm. The amount of silver analyzed by EDX accounted for 35%wt in TR-Ag but nil in TR. Silver-coated TR-Ag implants had 24% lower S. aureus viable counts compared to non-coated TR analogues, and 9% lower compared to GB controls. Despite trabecular implants, both with and without silver, had higher viable counts than GB, the viable count of S. epidermidis was 42% lower on TR-Ag compared to TR. The percentage of viable hOB, measured by LDH and normalized to controls and area at 1 day, was lower on both TR-Ag (18%) and on TR (13%) when compared with GB (89%). However, after 1 week, cell proliferation increased more markedly on trabecular implants, with a 5-fold increase on TR-Ag, a 3.4-fold increase on TR, and a 1.7-fold increase on GB. Furthermore, after 2 weeks of hOB culture, proliferation increased 20-fold on TR-Ag, 29-fold on TR, and 3.9-fold for GB, compared to 1 day. The osteoconductive potential measured by ALP illustrated slightly higher values for TR-Ag compared to TR at 1 day and 2 weeks, however below those of GB samples. Cell morphology assessed by microscopy showed abundant growth of osteoblast-like cells confined to the pores of TR-Ag and TR. Overall, our findings indicate that the silver coating of trabecular titanium exerts limited cytotoxic effects on osteoblasts and confers antimicrobial effects on two PJI-relevant bacterial strains. We conclude that improving material design by mimicking the porosity and architecture of cancellous bone can enhance osteoconductivity while the deposition of silver confers potent antimicrobial properties


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 86 - 86
1 Jul 2014
Spriano S Ferraris S Miola M
Full Access

Summary Statement. The problem facing this research is to promote rapid osteointegration of titanium implants and to minimise the risks of infections by the functionalization with different agents, each designed for a specific action. A patented process gives a multifunctional titanium surface. Introduction. A patented process of surface modification is described. It gives a multifunctional surface with a multiscale roughness (micro and nano topography), that is excellent for osteoblast adhesion and differentiation. It has a high degree of hydroxylation, that is relevant for inorganic bioactivity (apatite-HA precipitation) and it is ready for a functionalization with biological factors. A direct grafting of ALP has been obtained. Moreover, the growth of an antibacterial agent within the surface oxide layer can be useful in order to combine the osteoinduction ability to antimicrobial effects. The selection of an inorganic agent (metal nanoparticles) has the advantage to avoid an eventual development of antibiotic resistance by bacteria. Experimental Methods. Ti-cp and Ti6Al4V samples were polished or blasted, etched in diluted hydrofluoric acid (step 1a), oxidised in hydrogen peroxide (step 1b), incubated in Tresyl chloride (step 2a) and Alkaline phosphatase (ALP) enzyme (step 2b) [1, 2]. A water solution, containing a salt of the metal to be added to the surface as an inorganic antibacterial agent, can be introduced during the oxidation in hydrogen peroxide. Surface morphology and chemical composition were investigated by Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) equipped with Energy Dispersive Spectroscopy (EDS). The composition of the outermost surface layer and the chemical state of elements were analyzed by X-Ray Photoelectron Spectroscopy (XPS). The activity of grafted enzyme was studied by an enzymatic activity test. In vitro bioactivity was evaluated by soaking the samples in simulated body fluid and SEM observation to verify hydroxyapatite (HA) precipitation. Antibacterial activity has been determined by inhibition halo test against S aureus. Results and Discussion. A peculiar multi-scale topography, with spongy-like nanometric features, was obtained after the inorganic treatment (step 1a-1b). This morphology can be superimposed on the micro-or macro roughness deriving from acid etching or blasting, by properly optimizing the process parameters. Moreover, the treated surfaces present a high density of hydroxyl groups (XPS data) and they are bioactive (HA precipitation after soaking in SBF for 15 days). Metal (Ag, Cu, Zn) nanoparticles can be grown within the surface oxide layer and they are effective as antimicrobial inorganic agents. The amount of the metal nanoparticles can be tailored in order to have an antibacterial or a bacteriostatic surface. The effective grafting of ALP (step 2a-2b) has been shown by XPS because of the appearance of characteristic peaks in the carbon region. Moreover, it has been observed that ALP maintains its activity after grafting by an enzymatic activity test. ALP grafting improves HA precipitation kinetics. Conclusions. An innovative process was applied to titanium surfaces in order to obtain a better bone integration ability and antibacterial activity. A multi scale surface topography (micro and nano features) was successfully obtained together with an high hydroxylation degree. Modified surfaces are able to induce hydroxyapatite precipitation in vitro and to graft ALP, maintaining its activity and improving bioactivity. Metal nanoparticles embedded in the surface oxide layer have an antibacterial effect


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 285 - 285
1 Jul 2014
Ehrhart N Rose R Woodard M Parkinson L Chubb L
Full Access

Summary Statement. A single, locally-delivered injection of a human placental product containing multipotent stromal cells reduced severity of infection in an immunosuppressed murine osteomyelitis model and eliminated infection in 25% of animals compared with 0% of controls without the use of antibiotics. Introduction. Implant–associated osteomyelitis is a serious orthopaedic condition and is particularly difficult to treat in immunosuppressed individuals. Despite great advancement in the field of biomaterials and pharmaceuticals, emerging patterns of antibiotic resistance, complex biofilm production and penetration of therapeutic concentrations of effective antibiotics into bone continue to represent unmet clinical challenges. The promise of adult multipotent stromal cells (MSCs) for tissue regeneration has been of intense interest in recent years. Among their many potential therapeutic uses, MSCs have also been shown to have direct antimicrobial properties. The objective of this study was to evaluate the efficacy of a locally–delivered human placental-based tissue product containing multipotent stromal cells (hAmSC) to reduce the severity of implant-associated Staphylococcus aureus osteomyelitis in an immunosuppressed murine model. We hypothesised that athymic mice with implant-associated osteomyelitis would have diminished infection following treatment with hAmSC as evidenced by decreased bioluminescence intensity and lower histologic scores for infection and bacterial load when compared to saline-treated controls. Methods. An athymic murine model of chronic implant-associated osteomyelitis was developed using luciferase-transfected Staphylococcus aureus to study the antimicrobial effects of a human placental-based product containing multi-potent stromal cells (hAmSC). Sixteen athymic mice had osteomyelitis established in the right femoral diaphysis. Fifteen days after inducing luc S. aureus osteomyelitis, the mice were randomised to receive a single 0.5 cc injection of hAmSC (n=8) or vehicle (0.9% saline) (n=8) into the soft tissues immediately adjacent to the infected bone. No antibiotics were administered throughout the duration of the study. Mice were imaged with an In Vivo Imaging System (IVIS 1000, PerkinElmer) twice weekly for 30 days to assess change in bioluminescence intensity from baseline immediately prior to treatment with either hAmSC or saline. Radiographs were obtained at days −10, 0, 10, 20 and 30 days post-injection and scored for bone changes secondary to osteomyelitis by a reviewer blinded to treatment group. Mice were sacrificed 30 days after treatment and femurs were examined histologically and scored for bacterial load and degree of inflammation by a pathologist blinded to treatment group. Results. Osteomyelitis was successfully established in all mice as evidenced by baseline bioluminescence imaging and radiographs. Mean bioluminescence intensity decreased from baseline in animals receiving hAmSC and remained below baseline for 28 days, whereas vehicle-treated animals showed an increase in mean bioluminescence intensity throughout the study period. Osteomyelitis resolved in 2/8 hAmSC-treated animals and 0/8 vehicle-treated animals as evidenced by bioluminescence imaging and histological examination for bacteria/inflammation at sacrifice. Radiograph scores for secondary bone changes were lower in mice treated with hAmSC than vehicle at 10, 20 and 30 days post injection. Median inflammatory score was lower in the hAmSC-treated mice than vehicle treated controls. Conclusions. A single injection of hAmSC was effective at reducing the severity of S. aureus infection without the use of antibiotics in this chronic implant associated osteomyelitis immunosuppressed murine model. In addition to reduced bioluminescence intensity below baseline for 28 days during the study period, infection was eliminated in 25% of animals in the hAmSC-treated group


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 3 | Pages 417 - 420
1 Mar 2007
Bielecki TM Gazdzik TS Arendt J Szczepanski T Kròl W Wielkoszynski T

Platelet-rich plasma is a new inductive therapy which is being increasingly used for the treatment of the complications of bone healing, such as infection and nonunion. The activator for platelet-rich plasma is a mixture of thrombin and calcium chloride which produces a platelet-rich gel.

We analysed the antibacterial effect of platelet-rich gel in vitro by using the platelet-rich plasma samples of 20 volunteers. In vitro laboratory susceptibility to platelet-rich gel was determined by the Kirby-Bauer disc-diffusion method. Baseline antimicrobial activity was assessed by measuring the zones of inhibition on agar plates coated with selected bacterial strains.

Zones of inhibition produced by platelet-rich gel ranged between 6 mm and 24 mm (mean 9.83 mm) in diameter. Platelet-rich gel inhibited the growth of Staphylococcus aureus and was also active against Escherichia coli. There was no activity against Klebsiella pneumoniae, Enterococcus faecalis, and Pseudomonas aeruginosa. Moreover, platelet-rich gel seemed to induce the in vitro growth of Ps. aeruginosa, suggesting that it may cause an exacerbation of infections with this organism. We believe that a combination of the inductive and antimicrobial properties of platelet-rich gel can improve the treatment of infected delayed healing and nonunion.