Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 93 - 93
4 Apr 2023
Mehta S Goel A Mahajan U Kumar P
Full Access

C. Difficile infections in elderly patients with hip fractures is associated with high morbidity and mortality. Antibiotic regimens with penicillin and its derivatives is a leading cause. Antibiotic prophylactic preferences vary across different hospitals within NHS. We compared two antibiotic prophylactic regimens - Cefuroxime only prophylaxis and Teicoplanin with Gentamicin prophylaxis in fracture neck of femur surgery, and evaluated the incidence of C. Difficile diarrhea and Surgical Site Infection (SSI). To assess the Surgical Site Infection and C. Difficile infection rate associated with different regimens of antibiotics prophylaxis in fracture neck of femur surgery. Data was analyzed retrospectively. Neck of femur fracture patients treated surgically from 2009 in our unit were included. Age, gender, co morbidities, type of fracture, operation, ASA grade was collected. 1242 patients received Cefuroxime only prophylaxis between January 2009 and December 2012 (Group 1) and 486 patients received Teicoplanin with Gentamicin between October 2015 and March 2017 (Group 2). There were 353 males and 889 female patients in Group 1 and 138 males and 348 female patients in Group 2. The co morbidities in both groups were comparable. Incidence of C. Difficile diarrhea and Surgical Site Infection (SSI) was noted. Statistical analysis with chi square test was performed to determine the ‘p’ value. C. Diff diarrhea rate in Group 2 was 0.41 % as compared to 1.29 % in Group 1. The Surgical Site Infection (SSI) rate in Group 2 was 0.41 % as compared to 3.06 % in Group 1. The comparative results were statistically significant (p = 0.0009). Prophylactic antibiotic regimen of Teicoplanin with Gentamicin showed significant reduction in C. Difficile diarrhea & Surgical Site Infection in fracture neck of femur patients undergoing surgery


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_3 | Pages 8 - 8
1 Apr 2015
Russo L Ferguson K Winter A MacGregor M Holt G
Full Access

Introduction. Acute kidney injury is a recognised post-operative complication in primary joint replacement. Recently it has been demonstrated that antibiotic regimen can significantly impact on the proportion of patients who develop acute kidney impairment post-operatively. Within our unit an increased rate of acute kidney injury had been noted post-operatively over the last 5 years. This increase followed the introduction of a rapid recovery protocol for arthroplasty patients. Our aim was determine whether we could identify a causative factor or those who were at increased risk of post-operative renal impairment. Methods. Data were collected for 413 patients initially retrospectively but continued prospectively. Univariable and multivariable analysis was performed to determine any causative factors. The primary increase was 150% increase in baseline creatinine, but as some authors recognise an increase in 125% this was also analysed. Results. Within the 12 month period studied 23.3% of patients developed acute kidney injury, with an increase of 125% of their baseline creatinine. 8.23% of patients developed an increase of 150% in their creatinine levels. Age, previous renal failure and the pre-operative use of an ACE inhibitor were found to be statistically higher in the renal failure group. The uni-variable analysis also demonstrated that patients who received a small volume of post-operative intravenous fluids had a lower rate of renal failure than those who received no fluids (10% vs. 23%; p = 0.04). The multivariable regression analysis demonstrated that age was the only statistically significant positive predictive factor in developing renal failure. Antibiotic regimen had no effect. Discussion. Renal impairment has significant impact on patient morbidity and post-operative management. It increases the length of stay, and may potentially require more invasive therapy. We have demonstrated that the identified risk factors are non-modifiable but that a gentamicin and teicoplanin regimen was not an implicated causative factor


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 21 - 21
1 Jan 2017
Thompson K Freitag L Eberli U Camenisch K Arens D Richards G Stadelmann V Moriarty F
Full Access

This longitudinal microCT study revealed the osteolytic response to a Staphylococcus epidermidis-infected implant in vivoand also demonstrates how antibiotics and/or a low bone mass state influence the morphological changes in bone and the course of the infection. Colonisation of orthopaedic implants with Staphylococcus aureusor S. epidermidisis a major clinical concern, since infection-induced osteolysis can drastically impair implant fixation or integration within bone. High fracture incidence in post-menopausal osteoporosis patients means that this patient group are at risk of implant infection. The low bone mass in these patients may exacerbate infection-induced osteolysis, or alter antibiotic efficacy. Therefore, the aims of this study were to examine the bone changes resulting from a S. epidermidisimplant infection in vivousing microCT imaging, and to determine if a low bone mass stateinfluences the course of the infection and the efficacy of antibiotic therapy. An in vivomodel system using microCT scanning [1], involving the implantation of either a sterile or a S. epidermidis-colonised PEEK screw into the proximal tibia of 24 week-old female Wistar rats, was used to investigate the morphological changes in bone following infection over a 28 day period. In addition, the efficacy of a combination antibiotic therapy (rifampin and cefazolin: administered twice daily from days 7–21 post-screw implantation) for affecting osteolysis was also assessed. A subgroup of animals was subjected to ovariectomy (OVX) at 12 weeks of age, allowing for a 12 week period for bone loss prior to screw implantation at 24 weeks. Bone resorption and formation rates, bone-implant contact and peri-implant bone volume in the proximity of the screw were assessed by microCT scanning at days 0, 3, 6, 9, 14, 20 and 28 days post-surgery. Following euthanasia at day 28, the implanted screw, bone and soft tissues were subjected to quantitative bacteriology as a measure of the efficacy of the antibiotic regimen. In non-OVX animals S. epidermidisinfection induced marked osteolysis, which peaked between 9 and 14 days post-screw implantation. Peak bone resorption was detected at day 6, before recovering to baseline levels at day 14. Infection also resulted in extensive deposition of mineralised tissue, initially within the periosteal region (day 9–14), then subsequently in the osteolytic region at day 20–28. Quantitative bacteriology indicated all non-OVX animals remained infected. Rifampin and cefazolin successfully cleared the infection in 5/6 non-OVX animals group although there was no difference observed in CT-derived bone parameters. OVX resulted in extensive loss of trabecular bone but this did not alter the temporal pattern of infection-induced osteolysis, or mineralised tissue deposition, which was similar to that observed in the non-OVX animals. Similarly, there was no difference in bacterial counts between non-OVX and OVX animals (39,005 colony-forming units (CFU) [range: 3,675–156,800] vs 37,665 CFU [range 3,250–84,000], respectively). Interestingly, antibiotic treatment was less effective in the OVX animals (3/5 remained infected), suggesting that antibiotics have reduced efficacy in OVX animals. This study demonstrates S. epidermidis-induced osteolysis displays a similar temporal pattern in both normal and low bone mass states, with comparable bacterial loads present within the localised infection site


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XI | Pages 18 - 18
1 Apr 2012
Holloway N Mahendra A
Full Access

The role of perioperative antibiotic prophylaxis in sarcoma surgery is well established. There are no guidelines for their use in this context but there is pressure from microbiologists to comply with agreed prophylaxis for joint arthroplasty despite major differences between patient groups and risks of infection in sarcoma surgery. Two simple surveys were conducted online, the first for bone sarcoma surgery, the second for soft tissue sarcomas. An email was sent to the major centres worldwide conducting such surgery with links to the online surveys to assess current practice regarding antibiotic prophylaxis and surgical drains. The survey was limited to 8 questions, the emphasis being a simple survey, but included questions on indications, choice, duration of therapy as well as use, size and duration of surgical drains. We received 38 responses from 15 countries to the bone sarcoma survey and 33 responses from 12 countries to the soft tissue sarcoma survey. Current antibiotic prophylaxis regimens varied widely among surgeons, emphasising the controversy that exists regarding what constitutes best clinical practice. Opinions regarding use of perioperative antibiotic prophylaxis in sarcoma surgery vary widely among orthopaedic surgeons worldwide, illustrating the controversy as to what constitutes best clinical practice. This survey suggests the need for a randomised clinical trial to aid in the development of guidelines in this area


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 11 | Pages 1568 - 1574
1 Nov 2005
Day RE Megson S Wood D

Allograft bone is widely used in orthopaedic surgery, but peri-operative infection of the graft remains a common and disastrous complication. The efficacy of systemic prophylactic antibiotics is unproven, and since the graft is avascular it is likely that levels of antibiotic in the graft are low.

Using an electrical potential to accelerate diffusion of antibiotics into allograft bone, high levels were achieved in specimens of both sheep and human allograft. In human bone these ranged from 187.1 mg/kg in endosteal (sd 15.7) to 124.6 (sd 46.2) in periosteal bone for gentamicin and 31.9 (sd 8.9) in endosteal and 2.9 (sd 1.1) in periosteal bone for flucloxacillin. The antibiotics remained active against bacteria in vitro after iontophoresis and continued to elute from the allograft for up to two weeks.

Structural allograft can be supplemented directly with antibiotics using iontophoresis. The technique is simple and inexpensive and offers a potential means of reducing the rate of peri-operative infection in allograft surgery. Iontophoresis into allograft bone may also be applicable to other therapeutic compounds.