Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 65 - 65
1 Jan 2018
Zagra L Gallazzi E Romanò D Scarponi S Romanò C
Full Access

Previous studies showed that a fast-resorbable antibacterial hydrogel coating (DAC®, Novagenit Srl, Mezzolombardo, TN, Italy) composed of covalently linked hyaluronan and poly-D, L-lactide, is able to reduce early post-surgical infection both after joint replacement and osteosynthesis. Aim of the present report is to investigate medium-term safety and efficacy of the coating in patients undergoing primary and revision cementless total hip replacement (THR). We designed a two-phases study. In both phases, DAC was prepared according to manufacturer's instructions. In brief, the syringe prefilled with 300 mg of sterile DAC powder was mixed, at the time of surgery, with a solution of 5 mL of sterile water and with the tailored antibiotics, at a concentration ranging from 25 mg/mL to 50 mg/mL. The resulting antibacterial hydrogel was then spread on the outer surface of the prosthesis just before implantation. In the first phase, safety was assessed. Forty-six patients (13 primary and 33 revision THR) were treated with DAC between 2013 and 2015 and evaluated at a 2.8 ± 0.7 years follow up (FU). Antibiotics used for DAC reconstruction were Vancomycin in 33 cases, Vancomycin + Meropenem in 10, Vancomycin + Rifampicin, Teicoplanin or Ceftazidime in 1 case, respectively. Patients were evaluated at 3, 6, 12 months and yearly after with a clinical and radiographic FU. No evidence of infection and no failure/loosening of the prosthesis were observed. No adverse events were reported. The second phase was designed to evaluate efficacy of DAC in preventing infection recurrences after a two stage revision for infected THR. Twenty-seven patients, treated with DAC coating, were compared with a control group of 32, treated in the same time period, without the coating. Demographics, host type and and identified bacteria were similar in the two groups (18.6% of MRSA in DAC group vs 18.5% MRSA in no-DAC group). Patients were evaluated clinically and radiographically at 3, 6, 12 months and yearly thereafter. At a minimum 2 years FU (mean 2.7), we observed 1 dislocation in each group and 2 cases of loosening in the no-DAC group. 4 cases (11%) of recurrence of infection in the no-DAC group (1 MRSA and 3 St. Epidermidis) and no infection recurrences in the DAC group. Due to the small cohort of patients this difference is not statistically significant (Fisher's exact test, p=0.18). This is, to our knowledge, the longest observation concerning the safety and efficacy of the DAC antibacterial coating, applied to hip replacement. The results are in line with those previously reported and point out the absence of side effects of the antibacterial coating in this application and the tendency to reduce re-infection in second stage. This finding needs to be confirmed by a larger dataset


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 12 - 12
19 Aug 2024
Zagra L Ding B Sciamanna L D'Apolito R
Full Access

This study aimed to verify the hypothesis that an antibiotic loaded hydrogel, defensive antimicrobial coating (DAC), reduces overall complication and infection rates when used for high-risk primary and revision total hip arthroplasty (THA).

This was a retrospective study matched cohort study of 238 patients, treated with cementless implants with and without DAC. A sub-group analysis of patients undergoing 2nd stage revision THA for prosthetic joint infection (PJI) was also conducted. Re-infection rates within 2 years, complications necessitating surgical intervention and radiographic analysis for aseptic loosening was assessed.

The mean age was 68.3±11.5 years, with 39 (32.8%) Macpherson class A, 64 (53.8%) class B and 16 (13.4%) class C patients. 4 (3.4%) patients in the DAC group developed complications including 1 PJI and 1 delayed wound healing, while 13 (10.9%) patients in the control group developed complications including 5 PJIs and 3 delayed wound healing (p=0.032). PJI rates (p=0.136) and delayed wound healing rates (p=0.337) were not statistically significant. For 2nd stage revision THA for PJI there were 86 patients in the DAC group and 45 in the control group. 1 (1.2%) patient in the DAC group developed complications with no recurrences of infection or delayed wound healing, while 10 (22.2%) patients in the control group developed complications including 4 recurrent PJI and 1 delayed wound healing (p=0.003). Recurrent PJI rates were statistically significant (p=0.005) while delayed wound healing rates were not (p=0.165). Patients treated with DAC also had lower rates of aseptic loosening (0% vs 6.7%; p=0.015).

Antibiotic impregnated hydrogel coatings on cementless implants showed decreased complication rates after complex primary or revision THA. In 2nd stage revision THA for PJI, it was associated with reduced risk of re-infection and aseptic loosening.