Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_14 | Pages 4 - 4
23 Jul 2024
Roberts RHR Shams N Ingram-Walpole S Barlow D Syed A Joshi Y Malek I
Full Access

Periprosthetic joint infections (PJIs) and osteosynthesis-associated infections (OSIs) present significant challenges in trauma and orthopaedic surgery, substantially impacting patient morbidity, mortality, and economic burden. This concern is heightened in patients with pre-existing comorbidities, such as diabetes mellitus, which are not always modifiable at presentation. A novel intraoperative strategy to prevent these infections is the use of Defensive Antibacterial Coating (DAC), a bio-absorbable antibiotic-containing hydrogel applied to implant surfaces at implantation, acting as a physical barrier to prevent infection. The purpose of this study is to assess the use of a commercially available hydrogel (DAC), highlighting its characteristics that make it suitable for managing PJIs and OSIs in orthopaedics and traumatology. Twenty-five patients who underwent complex orthopaedic procedures with intraoperative application of DAC between March 2022 and April 2023 at a single hospital site were included. Post-operative assessment encompassed clinical, laboratory, and radiographic examinations. In this study, 25 patients were included, with a mean age of 70 ± 14.77 years and an average ASA grade of 2.46 ± 0.78. The cohort presented an average Charleston Comorbidity score of 5.45 ± 2.24. The procedures included 8 periprosthetic fractures, 8 foot and ankle surgeries, 5 upper limb surgeries, and 4 elective hip and knee surgeries. Follow-up assessments at 6 weeks and 6 months revealed no evidence of PJI or OSI in any patients, nor were any treatments for PJI or OSI required during the interim period. DAC demonstrated efficacy in preventing infections in high-risk patients undergoing complex orthopaedic procedures. Our findings warrant further investigation into the use of DAC in complex hosts with randomized control trials


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 58 - 58
1 Oct 2022
Cecotto L van Kessel K Wolfert M Vogely H van der Wal B Weinans H van Strijp J Yavari SA
Full Access

Aim. In the current study we aim to characterize the use of cationic host defense peptides (HDPs) as alternative antibacterial agents to include into novel antibacterial coatings for orthopedic implants. Staphyloccous aureus represent one the most challenging cause of infections to treat by traditional antibacterial therapies. Thanks to their lack of microbial resistance described so far, HDPs represent an attractive therapeutic alternative to antibiotics. Furthermore, HDPs have been showed to control infections via a dual function: direct antimicrobial activity and regulation of immune response. However, HDPs functions characterization and comparison is controversial, as changing test conditions or cell type used might yield different effects from the same peptide. Therefore, before moving towards the development of HDP-based coatings, we need to characterize and compare the immunomodulatory and antibacterial functions under the same conditions in vitro of 3 well-known cathelicidins: human LL-37, chicken CATH-2, and bovine-derived IDR-1018. Method. S. aureus, strain SH1000, was incubated with different concentrations of each HDP and bacterial growth was monitored overnight. Primary human monocytes were isolated from buffy coats using Ficoll-Paque density and CD14 microbeads, and differentiated for 7 days to macrophages. After 24h incubation in presence of LPS and HDPs, macrophages cytokines production was measured by ELISA. Macrophages cultured for 24h in presence of HDPs were infected with serum-opsonized S. aureus. 30 min and 24h after infection, bacterial phagocytosis and intracellular killing by macrophages were measured by flow cytometry and colony forming units (CFU) count respectively. Results. All HDPs efficiently inhibit macrophages LPS-mediated activation, as observed by a reduced production of TNF-α and IL-10. Despite a comparable anti-inflammatory action, only CATH-2 shows direct antibacterial properties at concentrations 10-times lower than those needed to stimulate immune cells. Although stimulation with HDPs fails to improve macrophages ability to kill intracellular S. aureus, IDR-1018 decreases the proportion of cells phagocytosing bacteria. Conclusions. In addition to a strong anti-inflammatory effect provided by all HDPs tested, CATH-2 has direct antibacterial effects while IDR-1018 reduces the proportion of macrophages infected by S. aureus. Use of these HDPs in combination with each other or with other conventional antibacterial agents could lead the way to the design of novel antibacterial coatings for orthopedic implants


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 30 - 30
1 Oct 2022
Jensen LK Jensen HE Blirup SA Bue M Hanberg P Soto S Aalbaek B Arkas M Vardavoulias M
Full Access

Aim. To develop a new system for antibacterial coating of joint prosthesis and osteosynthesis material. The new coating system was designed to release gentamicin immediately after insertion to eradicate surgical contamination. Method. Steel implants (2×15mm) were coated with a solid nanocomposite xerogel made from silica and the dendritic polymer, hyperbranched polyethyleneimine. The xerogel was anchored inside a porous surface made by pre-coating with titanium microspheres. Finally, gentamicin was encapsulated in the xerogel, i.e. no chemical binding. A total of 50 µg gentamicin was captured into each implant. The efficacy of the new coating was evaluated in a porcine model of implant associated osteomyelitis. In total, 30 female pigs were randomized into 3 study groups (n=10). Group A; plain implants + saline, Group B; plain implants + 10. 4. CFU of Staphylococcus aureus, and Group C; coated implants + 10. 4. CFU of S. aureus. Implant + inoculum was placed into a pre-drilled implant cavity of the right tibia and the pig was euthanized 5 days afterwards. Postmortem microbiology and pathology were performed. Two additional pigs were used in a pharmacokinetic study where microdialysis (MD) catheters were placed alongside coated implants. Extracellular fluid was sampled regularly for 24 hours from the MD catheters and analyzed for gentamicin content. Results. Within Groups A and C, all implants were found sterile by sonication and bacteria could not be identified within the surrounding bone tissue. In contrast, all Group B animals had S. aureus positive implant and tissue microbiology. Macroscopic and microscopic pathological examinations confirmed that Group A and C animals were complete identic, i.e. no pus around implants and only minor peri-implant inflammation related to insertion of implants per se. All Group B animals had pus around their implants and a massive peri-implant inflammatory response dominated by neutrophil granulocytes. Maximum gentamicin release (35 µg /mL) was measured in the first obtained MD sample, i.e. after 30 min, and the concentration stayed above the MIC level for the used S. aureus strain for 8 hours. Conclusions. The new xerogel coating prevented development of osteomyelitis. Prevention was due to a fast gentamicin release immediately following insertion and antimicrobial active concentrations were detectable several hours after implantation. This means that the critical time point of most relevant surgical procedures potentially could be protected by the novel coating. The new coating will be investigated on larger scale implants and full-size prosthesis in the future


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 80 - 80
1 Dec 2016
Malizos K Capuano N Mezzoprete R D'Arienzo M Van Der Straeten C Drago L Romanò C
Full Access

Aim. Infection remains among the first reasons of failure of joint prosthesis. According to various preclinical reports, antibacterial coatings of implants may prevent bacterial adhesion and biofilm formation. Aim of this study is to present the first clinical trial on an antibiotic-loaded fast-resorbable hydrogel coating. *. , in patients undergoing hip or knee prosthesis. Method. In this multi-center, randomized, prospective, study, a total of 380 patients, scheduled to undergo primary or revision total hip or knee joint replacement, using a cementless or a hybrid implant, were randomly assigned, in six European orthopedic centers, to receive the antibiotic-loaded DAC coating or to a control group, without coating. Pre- and post-operative assessment of clinical scores, wound healing, laboratory tests and x-ray were performed at fixed time intervals. Results. Overall 373 patients were available at a minimum follow-up of 6 months (maximum 24 months). On average, wound healing, laboratory tests and radiographic findings did not show any significant difference between the two-groups. Eleven early surgical site infections (6%) were observed in the control group, compared to one (0.6%) in the treated group (p=0.003). No local or systemic side effects related to DAC hydrogel coating were observed and no detectable interference with implant osteointegration was noted. Conclusions. The use of a fast-resorbable, antibiotic-loaded hydrogel implant coating provides a reduced rate of early surgical site infections after hip or knee joint replacement using cementless or hybrid implants, without any detectable adverse event or side effects


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 138 - 138
1 Dec 2015
Malizos K Scarponi S Simon K Blauth M Romanò C
Full Access

Infection is among the first reasons for failure of orthopedic implants. Various antibacterial coatings for implanted biomaterials are under study, but only few technologies are currently available in the clinical setting. Previous studies showed the in vitro and in vivo efficacy and safety of a fast resorbable (<96 h) hyaluronic and polylactic acid based hydrogel, loaded with antibiotic or antibiofilm agents (DAC®, Novagenit Srl, Mezzolombardo, TN). Aim of this study is to report the results of the largest clinical trial in trauma and orthopedic patients. In this prospective, controlled, study, a total of 184 patients (86 treated with internal osteosinthesis for closed fractures and 98 undergoing cementless total hip or knee joint prosthesis) were randomly assigned in three European orthopaedic centers to receive antibiotic-loaded DAC coating or to a control group, without coating. Pre- and post-operative assessment of laboratory tests, wound healing (ASEPSIS score), clinical score (SF-12 score) and x-rays were performed at fixed time intervals. Statistical analysis was performed with Fisher exact test or Student's t test. Significance level was set at p<0.05. The study was approved by the local Ethical Committee and all patients provided a written informed consent. On average, wound healing, clinical scores, laboratory tests and radiographic findings did not show any significant difference between the two-groups at a mean 12 months follow-up (min: 6, max: 18 months). Four surgical site infections and two delayed union were observed in the control group compared to none in the treated group. No local or systemic side effects, that could be related to DAC hydrogel coating, were noted and no detectable interference with bone healing or osteointegration could be found. This is the largest study, with the longest follow-up, reporting on clinical results after the use of a fast-resosrbable anti-bacterial hydrogel coating for orthopaedic and trauma implants. Our results show the safety of the tested coating in different indications; although not statistically significant, the data also show a trend towards surgical site infection reduction, as previously demonstrated in the animal models