Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 23 - 23
17 Apr 2023
Wu Y
Full Access

We investigated factors associated with postoperative lipiduria and hypoxemia in patients undergoing surgery for orthopedic fractures. We enrolled patients who presented to our emergency department due to traumatic fractures between 2016 and 2017. We collected urine samples within 24 hours after the patients had undergone surgery to determine the presence of lipiduria. Hypoxemia was defined as an SpO2 <95% determined with a pulse oximeter during the hospitalization. Patients’ anthropometric data, medical history, and laboratory test results were collected from the electronic medical record. Logistic regression analyses were used to determine the associations of clinical factors with postoperative lipiduria and hypoxemia with multivariate adjustment. A total of 144 patients were analyzed (mean age 51.3 ± 22.9 years, male 50.7%). Diabetes (odd ratio 3.684, 95% CI 1.256-10.810, p=0.018) and operation time (odd ratio 1.005, 95% CI 1.000-1.009, p=0.029) were independently associated with postoperative lipiduria, while age (odd ratio 1.034, 95% CI 1.003-1.066, p=0.029), body mass index (odd ratio 1.100, 95% CI 1.007-1.203, p=0.035), and operation time (odd ratio 1.005, 95% CI 1.000-1.010, p=0.033) were independently associated with postoperative hypoxemia. We identified several factors independently associated with postoperative lipiduria and hypoxemia in patients with fracture undergoing surgical intervention. Operation time was associated with both postoperative lipiduria and hypoxemia, and we recommend that patients with prolonged operation for fractures should be carefully monitored for clinical signs related to fat embolism syndrome


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 35 - 35
17 Nov 2023
Timme B Biant L McNicholas M Tawy G
Full Access

Abstract. Objectives. Little is known about the impact of cartilage defects on knee joint biomechanics. This investigation aimed to determine the gait characteristics of patients with symptomatic articular cartilage lesions of the knee. Methods. Gait analyses were performed at the Regional North-West Joint Preservation Centre. Anthropometric measurements were obtained, then 16 retroreflective markers representing the Plug-in-Gait biomechanical model were placed on pre-defined anatomical landmarks. Participants walked for two minutes at a self-selected speed on a treadmill on a level surface, then for 2 minutes downhill. A 15-camera motion-capture system recorded the data. Knee kinematics were exported into Matlab to calculate the average kinematics and spatiotemporal parameters per patient across 20 gait cycles. Depending on the normality of the data, paired t-tests or Wilcoxon ranked tests were performed to compare both knees (α = 0.05). Results. 20 patients participated; one of whom has bilateral cartilage defects. All 20 data sets were analysed for level walking; 18 were analysed for downhill walking. On a level surface, patients walked at an average speed of 3.1±0.8km/h with a cadence of 65.5±15.3 steps/minute. Patients also exhibited equal step lengths (0.470±0.072m vs 0.471±0.070m: p=0.806). Downhill, the average walking speed was 2.85±0.5km/h with a cadence of 78.8±23.1 steps/minute and step lengths were comparable (0.416±0.09m vs 0.420±0.079m: p=0.498). During level walking, maximum flexion achieved during swing did not differ between knees (54.3±8.6° vs 55.5±11.0°:p=0.549). Neither did maximal extension achieved at heel strike (3.1±5.7° vs 5.4±4.7°:p=0.135). On average, both knees remained in adduction throughout the gait cycle, with the degree of adduction greater in flexion in the operative knee. However, differences in maximal adduction were not significant (22.4±12.4° vs 18.7±11.0°:p=0.307). Maximal internal-external rotation patterns were comparable in stance (0.9±7.7° vs 3.5±9.8°: p=0.322) and swing (7.7±10.9° vs 9.8±8.3°:p=0.384). During downhill walking, maximum flexion also did not differ between operative and contralateral knees (55.38±10.6° vs 55.12±11.5°:p=0.862), nor did maximum extension at heel strike (1.32±6.5° vs 2.73±4.5°:p=0.292). No significant difference was found between maximum adduction of both knees (15.87±11.0° vs 16.78±12.0°:p=0.767). In stance, differences in maximum internal-external rotation between knees were not significant (5.39±10.7° vs 6.10±11.8°:p=0.836), nor were they significant in swing (7.69±13.3° vs 7.54±8.81°:p=0.963). Conclusions. Knee kinematics during level and downhill walking were symmetrical in patients with a cartilage defect of the knee, but an increased adduction during flexion in the operative knee may lead to pathological loading across the medial compartment of the knee during high flexion activities. Future work will investigate this further and compare the data to a healthy young population. We will also objectively assess the functional outcome of this joint preservation surgery to monitor its success. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 141 - 141
1 Nov 2021
Moretti B
Full Access

Aim. This study aims to define the normal postoperative presepsin kinetics in patients undergoing primary cementless total hip replacement (THR). Methods. Patients undergoing primary cementless THR at our Institute were recruited. At enrollment anthropometric data, smocking status, osteoarthritis stage according to Kellgren and. Lawrence, Harris Hip Score (HHS), drugs assumption and comorbidities were recorded. All the patients underwent serial blood tests, including complete blood count, presepsin (PS) and C-Reactive Protein (CRP) 24 hours before arthroplasty and at 24-, 48-, 72- and 96-hours postoperatively and at 3-, 6- and 12-months follow-up. Statistical analysis was performed with SPSS v25.0 (SPSS Inc, Chicago, IL, USA). The Wilcoxon and Kruskal-Wallis tests followed by the Dunn multiple comparison post hoc tests were carried out. Correlations between PS, CRP and TOT were assessed using the Spearman rank correlation coefficient. P values below 0.05 were considered significant. Results and conclusion. A total of 96 patients were recruited (51 female; 45 male; mean age= 65.74±5.58) were recruited. The mean PS values were: 137.54 pg/ml at baseline, 192.08 pg/ml at 24-hours post-op; 254.85 pg/ml at 48-hours post-op; 259 pg/ml at 72-hours post-op; 248.6 pg/ml at 96-hour post-op; 140.52 pg/ml at 3-months follow-up; 135.55 pg/ml at 6-months follow-up and 130.11 pg/ml at 12-months follow-up. In two patients (2.08%) a soft-tissue infection was observed; in these patients higher levels (>350pg/mL) were recorded at 3-months follow-up. The lack of a presepsin decrease at 96 hours post-operatively should be a predictive factor of infection


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 46 - 46
1 Mar 2021
Silvestros P Preatoni E Gill HS Cazzola D
Full Access

Abstract. Objectives. Catastrophic neck injuries in rugby tackling are rare (2 per 100,000 players per year) with 38% of these injuries occurring in the tackle. The aim of this study was to determine the primary mechanism of cervical spine injury during rugby tackling and to highlight the effect of tackling technique on intervertebral joint loads. Methods. In vivo and in vitro experimental data were integrated to generate realistic computer simulations representative of misdirected tackles. MRI images were used to inform the creation of a musculoskeletal model. In vivo kinematics and neck muscle excitations were collected during lab-based staged tackling of the player. Impact forces were collected in vitro using an instrumented anthropometric test device during experimental simulations of rugby collisions. Experimental kinematics and muscle excitations were prescribed to the model and impact forces applied to seven skull locations (three cranial and four lateral). To examine the effects of technique on intervertebral joint loads the model's neck angle was altered in steps of 5° about each rotational axis resulting in a total of 1,623 experimentally informed simulations of misdirected tackles. Results. Neck flexion angles and cranial impact locations had the largest effects on maximal compression, anterior shear and flexion moment loads. During posterior cranial impacts compression forces and flexion moments increased from 1500 to 3200 N and 30 to 60 Nm respectively between neck angles of 30° extension and 30° flexion. This was more evident at the C5-C6 and C6-C7 joints. Anterior shear loads remained stable throughout neck angle ranges however during anterior impacts they were directed posteriorly when the neck was flexed. Conclusions. The combination of estimated joint loads in the lower cervical spine support buckling as the primary injury mechanism of anterior bilateral facet dislocations observed in misdirected rugby tackles and highlights the importance of adopting a correct tackling technique. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 25 - 25
1 Jan 2019
Jones P Woodgate S Williams D Biggs P Nicholas K Button K Corcoran P Holt C
Full Access

Whilst home-based exercise rehabilitation plays a key role in determining patient outcomes following orthopaedic intervention (e.g. total knee replacement), it is very challenging for clinicians to objectively monitor patient progress, attribute functional improvement (or lack of) to adherence/non-adherence and ultimately prescribe personalised interventions. This research aimed to identify whether 4 knee rehabilitation exercises could be objectively distinguished from each other using lower body inertial measurement units (IMUs) and principle components analysis (PCA) in the hope to facilitate objective home monitoring of exercise rehabilitation. 5 healthy participants performed 4 repetitions of 4 exercises (knee flexion in sitting, knee extension, single leg step down and sit to stand) whilst wearing lower body IMU sensors (Xsens, Holland; sampling at 60 Hz). Anthropometric measurements and a static calibration were combined to create the biomechanical model, with 3D hip, knee and ankle angles computed using the Euler sequence ZXY. PCA was performed on time normalised (101 points) 3D joint angle data which reduced all joint angle waveforms into new uncorrelated PCs via an orthogonal transformation. Scatterplots of PC1 versus PC2 were used to visually inspect for clustering between the PC values for the 4 exercises. A one-way ANOVA was performed on the first 3 PC values for the 9 variables under analysis. Games-Howell post hoc tests identified variables that were significantly different between exercises. All exercises were clearly distinguishable using the PC scatterplot representing hip flexion-extension waveforms. ANOVA results revealed that PC1 for the knee flexion angle waveform was the only PC value statistically different across all exercises. Findings demonstrate clear potential to objectively distinguish between different knee rehabilitation exercises using IMU sensors and PCA. Flexion-extension angles at the hip and knee appear most suited for accurate separation, which will be further investigated on patient data and additional exercises


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 87 - 87
1 Apr 2018
Sant Z Mifsud L Muscat C
Full Access

Designs of medical devices are tested for their mechanical behaviour, ability to transfer the load that is normally bore by the healthy tissue, and prove of the resistance to fatigue. The virtual testing in silico is widely accepted technique based on three sets of input data – geometry is normally obtained from CT or MRI scan as well as the tissue density that is translated into mechanical properties of the tissue. The virtual behaviour of the system is controlled by set of constrains accordingly while the third set of data consist of the load that system normally transfers through the load-bearing tissue. The magnitude and character of the load is highly dependent on the physical activity, external loads, physical condition of the subject and its specific factors such as gender, health condition, etc. Most of the published simulations use estimated simplified loads, which barely simulate the real behaviour of the system. The evaluation of the spinal load published some years back estimated a normal (N) and shear force (S) accompanied by the flexing moment (M). Due to lack of experimental possibility we used these data to test the biomechanical response of the lumbar segment with isotropic material models of all tissues. Then we investigated the possibility to evaluate muscular forces and their recruitment. It is a complex task and even today it is not possible to measure directly in vivo all muscular forces contributing to the movement. The musculo-skeletal system is a statically indeterminate system. The forces can be solved by means of computational modelling based on the measured trajectories of the body motion and additional optimization functions combined with static equations. The trajectories were recorded by the fast camera system in our motion laboratory and consequently exported into an open simulation software that uses a generic skeleton with around two hundreds muscle fascicles. The skeleton was scaled to correspond to our subject's anthropometric data and further scaling to mock-up the generic vertebrae was performed to eliminate discrepancies between the generic and subject's bones. Once these adjustments were done a kinematics and inverse dynamics modules were engage with selected objective function controlling the muscular recruitment that the max. relative muscular force is as small as possible. The 84 muscular forces acting on the segment were exported to a text file in APDL language and uploaded in the Finite Element (FE) database. The results of FE analysis were compared to the results obtained earlier using N,S,M load [1]. The comparison between the two models shows that the results of segment's total displacement was reduced by 36 percent compared to initial results. The stress and stress intensity increased six times. The identical model with orthotropic material showed reduced displacement by 80 percent and the stress and stress intensity was reduced by 60 percent compared to initial results


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 78 - 78
1 Aug 2012
Merle C Waldstein W Gregory J Goodyear S Aspden R Aldinger P Murray D Gill H
Full Access

In uncemented total hip arthroplasty (THA), the optimal femoral component should allow both maximum cortical contact with proximal load transfer and accurate restoration of individual joint biomechanics. This is often compromised due to a high variability in proximal femoral anatomy. The aim of this on-going study is to assess the variation in proximal femoral canal shape and its association with geometric and anthropometric parameters in primary hip OA. In a retrospective cohort study, AP-pelvis radiographs of 98 consecutive patients (42 males, 56 females, mean age 61 (range:45-74) years, BMI 27.4 (range:20.3-44.6) kg/m2) who underwent THA for primary hip OA were reviewed. All radiographs were calibrated and femoral offset (FO) and neck-shaft-angle (NSA) were measured using a validated custom programme. Point-based active shape modelling (ASM) was performed to assess the shape of the inner cortex of the proximal femoral meta- and diaphysis. Independent shape modes were identified using principal component analysis (PCA). Hierarchical cluster analysis of the shape modes was performed to identify natural groupings of patients. Differences in geometric measures of the proximal femur (FO, NSA) and demographic parameters (age, height, weight, BMI) between the clusters were evaluated using Kruskal-Wallis one-way-ANOVA or Chi-square tests, as appropriate. In the entire cohort, mean FO was 39.0 mm, mean NSA was 131 degrees. PCA identified 10 independent shape modes accounting for over 90% of variation in proximal femoral canal shape within the dataset. Cluster Analysis revealed 6 shape clusters for which all 10 shape modes demonstrated a significantly different distribution (p-range:0.000-0.015). We observed significant differences in age (p=0.032), FO (p<0.001) and NSA (p<0.001) between the clusters. No significant differences with regard to gender or BMI were seen. Our preliminary analysis has identified 6 different patterns of proximal femoral canal shape which are associated with significant differences in femoral offset, neck-shaft-angle and age at time of surgery. We are currently evaluating the entire dataset of 345 patients which will allow a comprehensive classification of variation in proximal femoral shape and joint geometry. The present data may optimise preoperative planning and improve future implant design in THA


Bone & Joint Research
Vol. 6, Issue 8 | Pages 514 - 521
1 Aug 2017
Mannering N Young T Spelman T Choong PF

Objectives

Whilst gait speed is variable between healthy and injured adults, the extent to which speed alone alters the 3D in vivo knee kinematics has not been fully described. The purpose of this prospective study was to understand better the spatiotemporal and 3D knee kinematic changes induced by slow compared with normal self-selected walking speeds within young healthy adults.

Methods

A total of 26 men and 25 women (18 to 35 years old) participated in this study. Participants walked on a treadmill with the KneeKG system at a slow imposed speed (2 km/hr) for three trials, then at a self-selected comfortable walking speed for another three trials. Paired t-tests, Wilcoxon signed-rank tests, Mann-Whitney U tests and Spearman’s rank correlation coefficients were conducted using Stata/IC 14 to compare kinematics of slow versus self-selected walking speed.


Bone & Joint Research
Vol. 6, Issue 8 | Pages 481 - 488
1 Aug 2017
Caruso G Bonomo M Valpiani G Salvatori G Gildone A Lorusso V Massari L

Objectives

Intramedullary fixation is considered the most stable treatment for pertrochanteric fractures of the proximal femur and cut-out is one of the most frequent mechanical complications. In order to determine the role of clinical variables and radiological parameters in predicting the risk of this complication, we analysed the data pertaining to a group of patients recruited over the course of six years.

Methods

A total of 571 patients were included in this study, which analysed the incidence of cut-out in relation to several clinical variables: age; gender; the AO Foundation and Orthopaedic Trauma Association classification system (AO/OTA); type of nail; cervical-diaphyseal angle; surgical wait times; anti-osteoporotic medication; complete post-operative weight bearing; and radiological parameters (namely the lag-screw position with respect to the femoral head, the Cleveland system, the tip-apex distance (TAD), and the calcar-referenced tip-apex distance (CalTAD)).


Bone & Joint Research
Vol. 5, Issue 11 | Pages 538 - 543
1 Nov 2016
Weeks BK Hirsch R Nogueira RC Beck BR

Objectives

The aim of the current study was to assess whether calcaneal broadband ultrasound attenuation (BUA) can predict whole body and regional dual-energy x-ray absorptiometry (DXA)-derived bone mass in healthy, Australian children and adolescents at different stages of maturity.

Methods

A total of 389 boys and girls across a wide age range (four to 18 years) volunteered to participate. The estimated age of peak height velocity (APHV) was used to classify children into pre-, peri-, and post-APHV groups. BUA was measured at the non-dominant heel with quantitative ultrasonometry (QUS) (Lunar Achilles Insight, GE), while bone mineral density (BMD) and bone mineral content (BMC) were examined at the femoral neck, lumbar spine and whole body (DXA, XR-800, Norland). Associations between BUA and DXA-derived measures were examined with Pearson correlations and linear regression. Participants were additionally ranked in quartiles for QUS and DXA measures in order to determine agreement in rankings.