We investigated factors associated with postoperative lipiduria and hypoxemia in patients undergoing surgery for orthopedic fractures. We enrolled patients who presented to our emergency department due to traumatic fractures between 2016 and 2017. We collected urine samples within 24 hours after the patients had undergone surgery to determine the presence of lipiduria. Hypoxemia was defined as an SpO2 <95% determined with a pulse oximeter during the hospitalization. Patients’
Abstract. Objectives. Little is known about the impact of cartilage defects on knee joint biomechanics. This investigation aimed to determine the gait characteristics of patients with symptomatic articular cartilage lesions of the knee. Methods. Gait analyses were performed at the Regional North-West Joint Preservation Centre.
Aim. This study aims to define the normal postoperative presepsin kinetics in patients undergoing primary cementless total hip replacement (THR). Methods. Patients undergoing primary cementless THR at our Institute were recruited. At enrollment
Abstract. Objectives. Catastrophic neck injuries in rugby tackling are rare (2 per 100,000 players per year) with 38% of these injuries occurring in the tackle. The aim of this study was to determine the primary mechanism of cervical spine injury during rugby tackling and to highlight the effect of tackling technique on intervertebral joint loads. Methods. In vivo and in vitro experimental data were integrated to generate realistic computer simulations representative of misdirected tackles. MRI images were used to inform the creation of a musculoskeletal model. In vivo kinematics and neck muscle excitations were collected during lab-based staged tackling of the player. Impact forces were collected in vitro using an instrumented
Whilst home-based exercise rehabilitation plays a key role in determining patient outcomes following orthopaedic intervention (e.g. total knee replacement), it is very challenging for clinicians to objectively monitor patient progress, attribute functional improvement (or lack of) to adherence/non-adherence and ultimately prescribe personalised interventions. This research aimed to identify whether 4 knee rehabilitation exercises could be objectively distinguished from each other using lower body inertial measurement units (IMUs) and principle components analysis (PCA) in the hope to facilitate objective home monitoring of exercise rehabilitation. 5 healthy participants performed 4 repetitions of 4 exercises (knee flexion in sitting, knee extension, single leg step down and sit to stand) whilst wearing lower body IMU sensors (Xsens, Holland; sampling at 60 Hz).
Designs of medical devices are tested for their mechanical behaviour, ability to transfer the load that is normally bore by the healthy tissue, and prove of the resistance to fatigue. The virtual testing in silico is widely accepted technique based on three sets of input data – geometry is normally obtained from CT or MRI scan as well as the tissue density that is translated into mechanical properties of the tissue. The virtual behaviour of the system is controlled by set of constrains accordingly while the third set of data consist of the load that system normally transfers through the load-bearing tissue. The magnitude and character of the load is highly dependent on the physical activity, external loads, physical condition of the subject and its specific factors such as gender, health condition, etc. Most of the published simulations use estimated simplified loads, which barely simulate the real behaviour of the system. The evaluation of the spinal load published some years back estimated a normal (N) and shear force (S) accompanied by the flexing moment (M). Due to lack of experimental possibility we used these data to test the biomechanical response of the lumbar segment with isotropic material models of all tissues. Then we investigated the possibility to evaluate muscular forces and their recruitment. It is a complex task and even today it is not possible to measure directly in vivo all muscular forces contributing to the movement. The musculo-skeletal system is a statically indeterminate system. The forces can be solved by means of computational modelling based on the measured trajectories of the body motion and additional optimization functions combined with static equations. The trajectories were recorded by the fast camera system in our motion laboratory and consequently exported into an open simulation software that uses a generic skeleton with around two hundreds muscle fascicles. The skeleton was scaled to correspond to our subject's
In uncemented total hip arthroplasty (THA), the optimal femoral component should allow both maximum cortical contact with proximal load transfer and accurate restoration of individual joint biomechanics. This is often compromised due to a high variability in proximal femoral anatomy. The aim of this on-going study is to assess the variation in proximal femoral canal shape and its association with geometric and
Whilst gait speed is variable between healthy and injured adults, the extent to which speed alone alters the 3D A total of 26 men and 25 women (18 to 35 years old) participated in this study. Participants walked on a treadmill with the KneeKG system at a slow imposed speed (2 km/hr) for three trials, then at a self-selected comfortable walking speed for another three trials. Paired Objectives
Methods
Intramedullary fixation is considered the most stable treatment for pertrochanteric fractures of the proximal femur and cut-out is one of the most frequent mechanical complications. In order to determine the role of clinical variables and radiological parameters in predicting the risk of this complication, we analysed the data pertaining to a group of patients recruited over the course of six years. A total of 571 patients were included in this study, which analysed the incidence of cut-out in relation to several clinical variables: age; gender; the AO Foundation and Orthopaedic Trauma Association classification system (AO/OTA); type of nail; cervical-diaphyseal angle; surgical wait times; anti-osteoporotic medication; complete post-operative weight bearing; and radiological parameters (namely the lag-screw position with respect to the femoral head, the Cleveland system, the tip-apex distance (TAD), and the calcar-referenced tip-apex distance (CalTAD)).Objectives
Methods
The aim of the current study was to assess whether calcaneal broadband ultrasound attenuation (BUA) can predict whole body and regional dual-energy x-ray absorptiometry (DXA)-derived bone mass in healthy, Australian children and adolescents at different stages of maturity. A total of 389 boys and girls across a wide age range (four to 18 years) volunteered to participate. The estimated age of peak height velocity (APHV) was used to classify children into pre-, peri-, and post-APHV groups. BUA was measured at the non-dominant heel with quantitative ultrasonometry (QUS) (Lunar Achilles Insight, GE), while bone mineral density (BMD) and bone mineral content (BMC) were examined at the femoral neck, lumbar spine and whole body (DXA, XR-800, Norland). Associations between BUA and DXA-derived measures were examined with Pearson correlations and linear regression. Participants were additionally ranked in quartiles for QUS and DXA measures in order to determine agreement in rankings.Objectives
Methods