Advertisement for orthosearch.org.uk
Results 1 - 18 of 18
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 11 - 11
1 Dec 2016
Daalder M Venne G Rainbow M Bryant T Bicknell R
Full Access

While reverse shoulder arthroplasty (RSA) is a reliable treatment option for patients with rotator cuff deficiency, loss of glenoid baseplate fixation often occurs due to screw loosening. We questioned whether an analysis of the trabecular bone density distribution in the scapula would indicate more optimal sites for screw placement. As such, the purpose of this study was to determine the anatomic distribution of trabecular bone density in regions of the scapula available for screw placement in RSA. Seven cadaveric shoulders were computed tomography (CT) scanned, and then voxels of the scapulae were isolated from the CT volume (Mimics 15.0 Materialise, Leuven, Belgium). Analyses were conducted in a common, 3D coordinate system. Volumetric regions of interest (ROI) within the scapula were identified based on potential baseplate screw sites. ROIs included areas at the base of the coracoid process lateral and inferior to the suprascapular notch, in the posterior and anterior lateral spine and in the anterosuperior and posteroinferior lateral border. Hounsfield Units (HU) were extracted from voxels corresponding to trabecular bone within each ROI. Overall bone density was summarised as the frequency of HU values above 80% of the ROI's maximum density value. Paired, two-tailed t-tests assuming unequal variance were used for pairwise comparisons (P≤0.05). Intra-region analyses compared two ROIs within the same broad anatomical structure; inter-region analyses compared ROIs between anatomical structures. Areas of the spine and lateral border of the scapula appeared to be denser than the coracoid process. Intra-region comparisons indicated no significant differences within ROI: coracoid P=0.43, spine P=0.95, lateral border P=0.41. ROI inferior to the suprascapular notch were on average 3.78% (P=0.08) and 6% (P=0.04) less dense than the anterosuperior and posteroinferior lateral border and 7.59% (P=0.006) and 7.72% (P=0.01) less dense than the anterior and posterior lateral spine. ROI lateral to the suprascapular notch were 6% (P=0.05) and 8.21% (P=0.02) less dense than the anterosuperior and posteroinferior lateral border and 9.8% (P=0.006) and 9.94% (P=0.008) less dense than the anterior and posterior lateral spine. There was no significant difference between the anterior spine and anterosuperior and posteroinferior lateral border (P=0.12, P=0.58), nor between the posterior spine and anterosuperior and posteroinferior lateral border (P=0.14, P=0.57). Results from this study indicate that the spine and lateral border of the scapula contain denser trabecular bone relative to regions in the coracoid. The higher quality bone of the spine and lateral border should be favoured over the coracoid process when fixing the glenoid baseplate in RSA. Further research may support the redesign of the glenoid baseplate geometry to better integrate the anatomy of the scapula and improve implant survival


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 15 - 15
1 Aug 2020
Ehrlich J Bryant T Rainbow M Bicknell R
Full Access

The purpose of this study is to quantify the distribution of bone density in the scapulae of patients undergoing reverse shoulder arthroplasty (RSA) to guide optimal screw placement. To achieve this aim, we compared bone density in regions around the glenoid that are targeted for screw placement, as well as bone density variations medial to lateral within the glenoid. Specimen included twelve scapula in 12 patients with a mean age of 74 years (standard deviation = 9.2 years). Each scapula underwent a computed tomography (CT) scan with a Lightspeed+ XCR 16-Slice CT scanner (General Electric, Milwaukee, USA). Three-dimensional (three-D) surface mesh models and masks of the scapulae containing three-D voxel locations along with the relative Hounsfield Units (HU) were created. Regions of interest (ROI) were selected based on their potential glenoid baseplate screw positioning in RSA surgery. These included the base of coracoid inferior and lateral to the suprascapular notch, an anterior and posterior portion of the scapular spine, and an anterosuperior and inferior portion of the lateral border. Five additional regions resembling a clock face, on the glenoid articular surface were then selected to analyze medial to lateral variations in bone density including twelve, three, six, and nine-o'clock positions as well as a central region. Analysis of Variance (ANOVA) tests were used to examine statistical differences in bone density between each region of interest (p < 0 .05). For the regional evaluation, the coracoid lateral to the suprascapular notch was significantly less dense than the inferior portion of the lateral border (mean difference = 85.6 HU, p=0.03), anterosuperior portion of the lateral border (mean difference = 82.7 HU, p=0.04), posterior spine (mean difference = 97.6 HU, p=0.007), and anterior spine (mean difference = 99.3 HU, p=0.006). For the medial to lateral evaluation, preliminary findings indicate a “U” pattern with the densest regions of bone in the glenoid most medially and most laterally with a region of less dense bone in-between. The results from this study utilizing clinical patient CT scans, showed similar results to those found in our previous cadaveric study where the coracoid region was significantly less dense than regions around the lateral scapular border and scapular spine. We also have found for medial to lateral bone density, a “U” distribution with the densest regions of bone most medially and most laterally in the glenoid, with a region of less dense bone between most medial and most lateral. Clinical applications for our results include a carefully planned trajectory when placing screws in the scapula, potentially avoiding the base of coracoid. Additionally, surgeons may choose variable screw lengths depending on the region of bone and its variation of density medial to lateral, and that screws that pass beyond the most lateral (subchondral) bone, will only achieve further purchase if they enter the denser bone more medially. We suspect that if surgeons strategically aim screw placement for the regions of higher bone density, they may be able to decrease micromotion in baseplate fixation and increase the longevity of RSA


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 20 - 20
1 Dec 2022
Ng G El Daou H Bankes M Cobb J Beaulé P
Full Access

Femoroacetabular impingement (FAI) – enlarged, aspherical femoral head deformity (cam-type) or retroversion/overcoverage of the acetabulum (pincer-type) – is a leading cause for early hip osteoarthritis. Although anteverting/reverse periacetabular osteotomy (PAO) to address FAI aims to preserve the native hip and restore joint function, it is still unclear how it affects joint mobility and stability. This in vitro cadaveric study examined the effects of surgical anteverting PAO on range of motion and capsular mechanics in hips with acetabular retroversion. Twelve cadaveric hips (n = 12, m:f = 9:3; age = 41 ± 9 years; BMI = 23 ± 4 kg/m2) were included in this study. Each hip was CT imaged and indicated acetabular retroversion (i.e., crossover sign, posterior wall sign, ischial wall sign, retroversion index > 20%, axial plane acetabular version < 15°); and showed no other abnormalities on CT data. Each hip was denuded to the bone-and-capsule and mounted onto a 6-DOF robot tester (TX90, Stäubli), equipped with a universal force-torque sensor (Omega85, ATI). The robot positioned each hip in five sagittal angles: Extension, Neutral 0°, Flexion 30°, Flexion 60°, Flexion 90°; and performed hip internal-external rotations and abduction-adduction motions to 5 Nm in each position. After the intact stage was tested, each hip underwent an anteverting PAO, anteverting the acetabulum and securing the fragment with long bone screws. The capsular ligaments were preserved during the surgery and each hip was retested postoperatively in the robot. Postoperative CT imaging confirmed that the acetabular fragment was properly positioned with adequate version and head coverage. Paired sample t-tests compared the differences in range of motion before and after PAO (CI = 95%; SPSS v.24, IBM). Preoperatively, the intact hips with acetabular retroversion demonstrated constrained internal-external rotations and abduction-adduction motions. The PAO reoriented the acetabular fragment and medialized the hip joint centre, which tightened the iliofemoral ligament and slackenend the pubofemoral ligament. Postoperatively, internal rotation increased in the deep hip flexion positions of Flexion 60° (∆IR = +7°, p = 0.001) and Flexion 90° (∆IR = +8°, p = 0.001); while also demonstrating marginal decreases in external rotation in all positions. In addition, adduction increased in the deep flexion positions of Flexion 60° (∆ADD = +11°, p = 0.002) and Flexion 90° (∆ADD = +12°, p = 0.001); but also showed marginal increases in abduction in all positions. The anteverting PAO restored anterosuperior acetabular clearance and increased internal rotation (28–33%) and adduction motions (29–31%) in deep hip flexion. Restricted movements and positive impingement tests typically experienced in these positions with acetabular retroversion are associated with clinical symptoms of FAI (i.e., FADIR). However, PAO altered capsular tensions by further tightening the anterolateral hip capsule which resulted in a limited external rotation and a stiffer and tighter hip. Capsular tightness may still be secondary to acetabular retroversion, thus capsular management may be warranted for larger corrections or rotational osteotomies. In efforts to optimize surgical management and clinical outcomes, anteverting PAO is a viable option to address FAI due to acetabular retroversion or overcoverage


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 142 - 142
1 May 2016
Fujii Y Fujiwara K Endou H Tetsunaga T Ozaki T Abe N Sugita N Mitsuishi M Inoue T Nakashima Y
Full Access

Object. CT-based navigation system in total hip arthroplasty(THA) is widely used to achieve accurate implant placement. However, its internal structure was a trade secret. Therefore, it was hard to analyze optimal reference points. Now, we developed our own CT-based navigation system originally, and since then we have been conducting various analyses in order to use the system more effectively. The purpose of this study was to analyze the optimal area and the number of registration points, which enables to move initial errors into the acceptable range. Methods. We set the anterior pelvic plane(APP) as the reference plane, and defined the coordinates as follows: X-axis for external direction, Y-axis for anterior direction, and Z-axis for proximal direction. We made pelvic bone models after THA, a normal shape and acetabular dysplasia model, and performed registration using an originally developed CT based navigation system. At first, we registered point paired matching at 4 points, and surface matching was performed at 53 points, which were placed around the acetabulum. 20 points were on anterosuperior, 10 points were on posterosuperior, 20 points were on posterior around the acetabulum, and 3 points were on the pubis. We selected surface matching points based on the actual operation approach, calculated the accuracy of the error correction, and searched the optimal area and the number of surface matching points. Results. Initial error could correct under 2mm gradually more than 20 surface matching points on anterosuperior area of the acetabular, assumed anterolateral approach. Initial error correction was improved by adding the reference points on the pubis. In comparison with the initial error on the X-axis, corrections of the Y-axis and Z-axis were more difficult. Initial error could correct under 2mm with around 20 surface matching points on posterior area of the acetabulum, assumed posterior approach, initial error on the Y-axis direction had difficulty in correction similarly. The difference of the shape of the pelvic effected initial error correction, it was more difficult to correct initial error on Y, Z-axis on dysplasia hip. Discussion. To correct initial error needs more than 20 surface matching points at least on the both anterolateral and posterior approaches. However, it is hard to correct initial error depending on surface matching points on the Y-axis, so it is desirable to return to point paired matching. On the registration of anterosuperior area of the acetabulum, correction of the initial error improved effectively by adding reference points on the pubis in this study, so to get reference points on the pubis is recommended if possible. Moreover, it was hard to correct initial error on the Z-axis because reference points on the anterosuperior of the acetabulum were flat, therefore it is necessary to reduce the initial error on Z-axis, we should consider choosing other reference points such as on the iliac crests which can define Z-axis direction. When using the navigation system on pelvic, some tendencies and characteristics exist, and understanding them can make the operation smooth and precisely


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 75 - 75
1 Jan 2016
Tomizawa K Tamai K Akutsu M Yano Y Yoshikawa K Sukegawa T Yamaguchi Y Taneichi H
Full Access

Objectives. Our principle is to bring the socket back to the true acetabulum position. A large structural bone graft is required for severe subluxation. We obtained good long-term results with structural bone grafts. It is necessary to evaluate the bone graft 3 dimensionally, not 2 dimensionally. M and M. We evaluated our 305 primary THAs operated from April 2010 to Mar 2014. Structural bone grafts were utilized on the acetabulum in 39 cases (12.8%). We measured the CE angle on post-operative plain coronal x-rays. 3D-CT evaluation was carried out on the cases with CE angles of 0 degrees or less. We checked the position of the graft and see how much surface area the graft occupies of the total area that receives the load. Result. Mean CE angle on the post-op plain coronal x-rays was −1.5°. 15 cases (38.5%) had 0 degree or less CE angles on the post-op plain coronal x-rays. 11 cases (−15°≤CE<0°), and 4 cases (−30°≤CE<−15°). Mean CE angle was +3.7° on coronal CT of the apex of the socket. Graft position on the acetabulum on 3D-CT was anterosuperior in 13 cases and posterosuperior in 2 cases, wile none showed wide positioning from anterosuperior to posterior. Conclusion. The contact surface area between the graft and the socket is not necessarily large 3 dimensionally, even if the CE angle is 0 degrees in the plain coronal X-rays. Depending on the graft position, sufficient support is considered to be obtained, even though a large size graft is used


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 73 - 73
1 Jul 2020
Yeoh J Chin P Regan WD Lim B Sasyniuk T Sayre E
Full Access

Glenoid failure remains the most common mode of total shoulder arthroplasty failures. Porous tantalum metal (Trabecular Metal™, Zimmer) have grown in popularity in hip and knee arthroplasty. First-generation porous tantalum metal-backed glenoid components demonstrated metal debris, resulted in failure, and were revised to second-generation glenoid implants. Evidence for second-generation porous tantalum metal implants in shoulder arthroplasty is sparse.1–4 The purpose of this study was to assess clinical and radiographic outcomes in a series of patients with second-generation porous tantalum glenoid components at a minimum two-years postoperative. We retrospectively reviewed the clinical and radiographic outcomes of patients who received a second-generation porous tantalum glenoid component anatomic shoulder arthroplasty between May 2009 and December 2017 with minimum 24 months follow-up. The shoulder arthroplasties were performed by one of two senior fellowship-trained surgeons. We collected postoperative clinical outcome indicators: EQ5D visual analog scale (VAS), Western Ontario Osteoarthritis of the Shoulder (WOOS) Index, American Shoulder and Elbow Surgeons (ASES) Score, and Constant Score (CS). Radiographic review was performed by an independent fellowship-trained surgeon. The Endrizzi metal debris grading system1 was utilized to grade metal debris. We computed descriptive statistics and compared outcome scores between groups via the non-parametric Wilcoxon rank-sum test, with group-wise comparisons defined by: metal debris and humeral head migration (secondary analyses). Thirty-five patients [23 male (65.7%) and 12 female (34.3%)] with 40 shoulder replacements participated in the study. Forty of 61 shoulders (65.6%) had an average of 64 ± 20.3 months follow-up (range 31 to 95). Average BMI was 27.5 ± 4.4 kg/m2 (range 19.5 to 39.1). The average postoperative EQ5D VAS at final follow-up was 74.6 ± 22.5, WOOS Index 87.9 ± 16.6, ASES Score 88.3 ± 10.9, and CS 80.4 ± 13. At final follow-up, 18 of 40 shoulders (45%) had metal debris [15 of 40 (37.5%) Endrizzi grade 1 and three of 40 (7.5%) Endrizzi grade 2], and 22 of 40 shoulders (55%) did not show evidence of metal debris. There was one non-revision reoperation (open subscapularis exploration), one shoulder with anterosuperior escape, three shoulders with glenoid radiolucencies indicative of possible glenoid loosening, and nine shoulders with superior migration of the humeral head (>2mm migration at final follow-up compared to immediate postoperative). When comparing postoperative scores between patients with vs without metal debris, we found no statistically significant difference in the EQ5D VAS, WOOS Index, ASES Score and CS. On further analyses, when comparing superior migration of the humeral head and postoperative outcomes scores, we found no statistically significant difference. We report the longest published follow-up with clinical and radiographic outcomes of second-generation porous tantalum glenoid anatomic shoulder arthroplasties. In this series of patients, 45% of total shoulder arthroplasties with a second-generation porous tantalum glenoid implant had radiographic evidence of metal debris. This metal debris was not statistically associated with poorer postoperative outcomes. Further investigation and ongoing follow-up are warranted


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 26 - 26
1 Jan 2013
Gelaude F Demol J Clijmans T Delport H
Full Access

Introduction. Different classification systems for acetabular deficiencies, including AAOS and Paprosky, are commonly used. Classification of these bone defects is often performed based on Xrays or CT images. Although the amount of bone loss is rarely measured quantitatively in these images, objective and quantitative data on the degree of bone loss could facilitate correct and consistent classification. Recently, a computerized CT-based tool was presented to quantitatively asses bone loss: TrABL (Total radial Acetabular Bone Loss). This study demonstrates on an extended patient population that TrABL combined with standard classification systems provides more detailed, quantitative information on bone defects. Methods. CT scans of 30 severe acetabular defects, classified Paprosky IIIA and IIIB, were collected and analysed with TrABL. The tool automatically calculated the total amount of bone that was missing around the acetabulum, seen from the hip's original rotation centre. Six anatomical regions were defined for which the degree of bone loss was expressed: anterosuperior, anteroinferior, inferior, posteroinferior, posterosuperior and medial. Results. Statistical analysis highlighted that total bone loss was highest in the posterosuperior region (63%±27%). Bone loss was lowest inferiorly. No statistical differences were found between the anterosuperior, anteroinferior, posteroinferior, and medial regions. The majority of the defects suffered at least 25% bone loss in more than half of the regions. All defects had at least one region with the same degree of bone loss. The quantitative 3D data of TrABL provided more information compared to general classification schemes. This information has shown to be crucial during implant selection and preoperative planning for multiple clinical cases. Conclusion. Classification of acetabular bone deficiencies into existing systems can be refined by the quantitative data provided by TrABL. As a result, the ease and consistency regarding the treatment selection for particular categories of challenging defects will increase


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 11 - 11
1 Aug 2013
Kooyman J Hodgson A
Full Access

Introduction. Bracing, a strategy employed by humans and robotic devices, can be generally described as a parallel mechanical link between the actor, the environment, and/or the workpiece that alters the mechanical impedance between the tool and workpiece in order to improve task performance. In this study we investigated the potential value of bracing in the context of bone milling to treat cam-type femoroacetabular impingement (FAI) lesions. The goal of this study was to evaluate whether a proposed bracing technique could enable a user to perform a cam resection more accurately and quickly than a currently employed arthroscopic technique. Materials/Methods. Test samples consisted of white urethane plastic reproductions of a commercially available adult proximal femur, which were laser scanned to obtain ground-truth surface information. A black cam lesion was then cast onto the surface of the femur in the anterosuperior region of the femoral neck, creating a clear visual resection boundary for the simulated osteochondroplasty. Test subjects were 4 adult males (25 +/− 3 years) with no surgical experience. Test conditions included two binary factors: (1) Braced vs. Unbraced – The braced case introduced a spherical bearing tool support mounted in the approximate anterolateral arthroscopic portal position. (2) Speed vs. Accuracy – The subject was instructed to perform the resection as quickly as possible or as accurately as possible with a moderate regard for time. Following the removal of the lesion, femurs were laser scanned to acquire the post-resection surface geometry, with accuracy being reported as RMS deviation between the pre- and post-resection scans over the anterosuperior neck region. Results. In both accuracy and speed cases, bracing tended to reduce errors (on the order of 7–14%) and task duration (on the order of 32–52%), although given the small number of subjects in this pilot study, these differences were not statistically significant. Conclusion. These results provide some encouragement that our hypothesis that bracing can improve both speed and accuracy of cam lesion resection by untrained subjects may be true. The standard deviations between subjects are high and are likely due to both the difficulty of the task and differences in experience using handheld power tools, so additional subjects would be needed to verify the trends identified here


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 17 - 17
1 May 2019
Jobin C
Full Access

Reverse shoulder arthroplasty is becoming a frequent treatment of choice for patients with shoulder disorders. Complication rates after reverse shoulder arthroplasty may be three-fold that of conventional total shoulder arthroplasty especially in high risk patient populations and diagnoses like revision arthroplasty, fracture sequelae, and severe glenoid bone loss. Complications include component malposition, stiffness, neurological injury, infection, dislocation or instability, acromial or scapular spine fractures, scapular notching, and loosening of implants. Recognition of preoperative risk factors and appropriate 3D planning are essential in optimizing patient outcome and intraoperative success. Failure of reverse shoulder arthroplasty is a significant challenge requiring appropriate diagnosis of the failure mode. The most common neurological injuries involve the brachial plexus and the axillary nerve due to traction, manipulation of the arm, aberrant retractor placement, or relative lengthening of the arm. Intraoperative fractures are relatively uncommon but include the greater tuberosity, acromion, and glenoid. Tuberosity fracture can be repaired intraoperatively with suture techniques, glenoid fractures may be insignificant rim fractures or jeopardise baseplate fixation and require abandoning RSA until glenoid fracture ORIF heals and then a second stage RSA. Periprosthetic infection after RSA ranges from 1 to 10% and may be higher in revision cases and frequently is Propionibacterium acnes and Staphylococcus epidermidis. Dislocation was one of the most common complications after RSA approximately 5% but with increased surgeon experience and prosthetic design, dislocation rates are approaching 1–2%. An anterosuperior deltoid splitting approach has been associated with increased stability as well as subscapularis repair after RSA. Scapular notching is the most common complication after RSA. Notching may be caused by direct mechanical impingement of the humerosocket polyethylene on the scapular neck and from osteolysis from polyethylene wear. Sirveaux classified scapular notching based on the defect size as it erodes behind the baseplate towards the central post. Acromial fractures are infrequent but more common is severely eroded acromions from CTA, with osteoporosis, with excessive lengthening, and with superior baseplate screws that penetrate the scapular spine and create a stress riser. Nonoperative care is the mainstay of acromial and scapular spine fractures. Recognizing preoperative risk factors and understanding component positioning and design is essential to maximizing successful outcomes


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 27 - 27
1 Dec 2013
Charbonnier C Chague S Ponzoni M Bernardoni M Hoffmeyer P Christofilopoulos P
Full Access

Introduction. Conventional pre-operative planning for total hip arthroplasty mostly relies on the patient radiologic anatomy for the positioning and choice of implants. This kind of planning essentially remains a static approach since dynamic aspects such as the joint kinematics are not taken into account. Hence, clinicians are not able to fully consider the evolving behavior of the prosthetic joint that may lead to implant failures. In fact, kinematics plays an important role since some movement may create conflicts within the prosthetic joint and even provoke dislocations. The goal of our study was to assess the relationship between acetabular implant positioning variations and resultant impingements and loss of joint congruence during daily activities. In order to obtain accurate hip joint kinematics for simulation, we performed an in-vivo study using optical motion capture and magnetic resonance imaging (MRI). Methods. Motion capture and MRI was carried out on 4 healthy volunteers (mean age, 28 years). Motion from the subjects was acquired during routine (stand-to-sit, lie down) and specific activities (lace the shoes while seated, pick an object on the floor while seated or standing) known to be prone to implant dislocation and impingement. The hip joint kinematics was computed from the recorded markers trajectories using a validated optimized fitting algorithm (accuracy: translational error ≍ 0.5 mm, rotational error < 3°) which accounted for skin motion artifactsand patient-specific anatomical constraints (e.g. bone geometry reconstructed from MRI, hip joint center) (Fig. 1). 3D models of prosthetic hip joints (pelvis, proximal femur, cup, stem, head) were developed based on variations of acetabular cup's inclination (40°, 45°, 60°) and anteversion (0°, 15°, 30°) parameters, resulting in a total of 9 different implant configurations. Femoral anteversion remained fixed and determined as “neutral” with the stem being parallel to the posterior cortex of the femoral neck. Motion capture data of daily tasks were applied to all implant configurations. While visualizing the prosthetic models in motion, a collision detection algorithm was used to locate abnormal contacts between both bony and prosthetic components (Fig. 2). Moreover, femoral head translations (subluxation) were computed to evaluate the joint congruence. Results. Simulations showed collisions occurring at maximal ranges of motion in the anterosuperior part of the acetabulum. Both prosthetic and bony impingements were observed, especially while lacing shoes and lying down. The more the inclination and anteversion were important, the lower the frequency of impingements was noted (e.g. 23% at 40°/0°, 13% at 45°/15°, 5% at 60°/30°). Subluxations followed the same trend (e.g. 4.0 mm at 40°/0°, 1.5 mm at 45°/15°, 0.2 mm at 60°/30°). They occurred in a posterior direction as a consequence of impingements. Conclusion. Daily tasks could expose the prosthetic hip to subluxation and impingement located in anterosuperior position. This location could be explained by the high hip flexion required to execute the motions (≥ 95°). Considering the kinematics solely, increasing inclination and anteversion seems to decrease possible conflicts, but mechanical aspects (stress, wear) should also be considered in the definition of ideal cup positioning


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 42 - 42
1 Oct 2012
Rasquinha B Sayani J Dickinson A Rudan J Wood G Ellis R
Full Access

Developmental dysplasia of the hip is a condition in which the acetabulum provides insufficient coverage of the femoral head in the hip joint. This configuration gives poor biomechanical load distribution, with increased stress at the superior aspect of the joint surfaces, and can often lead to degenerative arthritis. Morphologically, the poor coverage may be due to an acetabulum that is too shallow or oriented in valgus. The dysplastic deformity can be treated surgically with a group of similar procedures, often labeled periacetabular osteotomies or rotational acetabular osteotomies. Each involves separating the acetabulum from the pelvis and fixating the fragment back to the pelvis in an orientation with increased coverage of the femoral head. This redistributes the biomechanical loads relative to acetabulum. Bone remodeling at the level of trabeculae is an accepted concept under research; however, it is unclear whether the hip undergoes gross morphology changes in response to changes in biomechanical loading. An understanding of the degree to which this remodeling occurs (if at all) may have an impact on surgical planning. In this retrospective study, computed tomography (CT) scans of 13 patients (2 male, 11 female, 40 ± 9 years of age) undergoing unilateral periacetabular osteotomies were examined; scans were taken both pre-operatively and at least a year post-operatively with an in-plane resolution of 0.55 mm and a slice thickness of 1.25 mm. Scans were segmented to produce triangulated meshes for the proximal femurs and the pelvis. These scans were manually processed to isolate the articular portions of the femoral heads and acetabulums, respectively; the fovea, acetabular fossa, any osteophytes and any segmentation artifacts were excluded. Post-operative meshes were registered to their pre-operative counterparts for both the femoral head and the acetabulum, for both the operative and non-operative hips, using the iterative closest point (ICP) algorithm to 20 iterations. To account for differences in defining the edges of the articular surfaces in the manual isolation, metrics were only calculated using points that were within 0.3 mm of a normal from the opposing mesh. With the resulting matched data, nearest neighbour distances were calculated to form the remodeling metrics. Select spurious datapoints were removed manually. For the operative femoral heads, the registered post-operative points were 0.24±0.53 mm outside of the pre-operative points. The maximum deviation was on average 1.94 mm with worst-case of 2.99 mm; the minimum deviation was −0.62 mm with worst-case of −2.06 mm. Positive numbers indicate the post-operative points are ‘outside’ of the pre-operative points – that is, farther from the head centre. The non-operative femoral heads have similar deviation values, 0.21±0.46 mm outside, with maximum and minimum deviation averaging to 1.24 mm and −0.74 mm respectively, with worst cases of 2.99mm and −1.80mm. For the operative acetabulums, the post-operative deviations were −0.08±0.43mm. The maximum and minimum deviations averaged to 0.62mm and −0.82mm, with worst cases of 2.14mm and −1.51mm across the set. Again, the non-operative acetabulums were very similar; post-operative deviations were −0.02±0.43mm, maximum and minimum deviations averaged to 1.24mm and −0.65mm, with worst cases of 1.97mm and −2.00mm. These quantitative measurements were reflected in manual examination of the meshes; generally speaking, there were small deviations with no overarching patterns across the anatomy. All metrics were very similar across the same anatomy (that is, femoral head or acetabulum) regardless of whether the hip operative or non-operative. Femurs tended to ‘grow’ slightly post-operatively, but by less than a half voxel in size. Given that the CT voxels are large compared to the measured deviations, it is possible the results may be sensitive to the manual segmentations used as source data. Manual examination of the deviations indicated a few potential trends. Seven operative and eleven non-operative acetabulums had a small patch of positive deviation (1mm to 1.5mm) in the anterosuperior aspect. This can be seen in the plot as the yellow-red area near the top right of the leftmost rendering. Other high-deviation areas included the superior aspect of the acetabulum (both positive and negative) and the superior aspect of the femoral head (generally positive). The edges of the mesh were often a source of high deviation. This is likely an artifact of over-inclusion the manual isolation of the articular surfaces, as joint surfaces become non-articular as they move away from the joint interface. Overall, the superior and anterosuperior aspects of the acetabulum and the superior aspect of the femoral head showed some indication of systemic changes; further study may clarify whether these data represent consistent anatomical changes. However, as the magnitude of the deviations between pre- and post-operative scans are on or below the order of the CT voxel size, we conclude that (in the absence of other strongly compelling evidence) periacetabular osteotomies for adults should be planned without the expectation of gross remodeling of the articular surfaces


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 74 - 74
1 Aug 2017
Walter W
Full Access

Ceramic-on-ceramic bearings provide a solution to the osteolysis seen with traditional metal-on-polyethylene bearings. Sporadic reports of ceramic breakage and squeaking concern some surgeons and this bearing combination can show in vivo signs of edge loading wear which was not predicted from in vitro studies. Taper damage or debris in the taper between the ceramic and metal may lead to breakage of either a ceramic head or insert. Fastidious surgical technique may help to minimise the risk of ceramic breakage. Squeaking is usually a benign complication, most frequently occurring when the hip is fully flexed. Rarely, it can occur with each step of walking when it can be sufficiently troublesome to require revision surgery. The etiology of squeaking is multifactorial origin. Taller, heavier and younger patients with higher activity levels are more prone to hips that squeak. Cup version and inclination are also relevant factors. Fifty-five ceramic bearings revised at our center were collected over 12 years. Median time to revision was 2.7 years. Forty-six (84%) cases had edge loading wear. The median femoral head wear volume overall was 0.2mm. 3. /yr, for anterosuperior edge loading was 2.0mm. 3. /yr, and the median volumetric wear rate for posterior edge loading was 0.15mm. 3. /yr (p=0.005). Osteolysis following metal-on-polyethylene total hip arthroplasty (THA) is well reported. Earlier generation ceramic-on-ceramic bearings did produce some osteolysis, but in flawed implants. As 3rd and now 4th generation ceramic THAs come into mid- and long-term service, the orthopaedic community has begun to see reports of high survival rates and very low incidence of osteolysis in these bearings. The technique used by radiologists for identifying the nature of lesions on Computed Tomography (CT) scan is the Hounsfield score which will identify the density of the tissue within the lucent area. Commonly the radiologist will have no access to previous imaging, especially pre-operative imaging if a long time has elapsed. With such a low incidence of osteolysis in this patient group, what, then, should a surgeon do on receiving a CT report on a ceramic-on-ceramic THA, which states there is osteolysis? This retrospective review aims to determine the accuracy of CT in identifying true osteolysis in a cohort of long-term 3rd generation ceramic-on-ceramic uncemented hip arthroplasties in our department. Methods. Pelvic CT scans were performed on the first 27 patients from a cohort of 301 patients undergoing 15-year review with 3rd generation alumina-alumina cementless THAs. The average follow-up was 15 years (15–17). The CT scans were reviewed against pre-operative and post-operative radiographs and reviewed by a second musculoskeletal specialist radiologist. Results. Eleven of the CT scans were reported to show acetabular osteolysis, two reported osteolysis or possible pre-existing cyst and one reported a definitive pre-existing cyst. After review of previous imaging including pre-operative radiographs, eleven of the thirteen patients initially reported to have osteolysis were found to have pre-existing cysts or geodes in the same size and position as the reported osteolysis, and a further patient had spot-welds with stress-shielding. One patient with evidence of true osteolysis awaits aspiration or biopsy to determine if he has evidence of ceramic wear or metallosis. Conclusions. Reports of osteolysis on CT should be interpreted with care in modern ceramic-on-ceramic THA to prevent unnecessary revision. Further imaging and investigations may be necessary to exclude other conditions such as geodes, or stress shielding which are frequently confused with osteolysis on CT scans


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 341 - 341
1 Mar 2013
Suenaga N Urita A Miyoshi N Oizumi N Yoshioka C
Full Access

Introduction. We performed humeral head replacement (HHR) with smaller head for closing the cuff defect in patients of cuff tear arthropathy (CTA). And also, if the cuff defect could not close by decreasing the head size, we add muscle tendon transfer such as latissimus dorsi transfer for posterosuperior defect and pectoralis major transfer for anterosuperior defect. Aim. The purpose of this study was to investigate clinical and functional outcomes of this procedure for CTA according to Hamada-Fukuda classification. Methods. 76 shoulders in 77 patients with CTA underwent HHR based on our strategy at average age of 74 years. Hamada-Fukuda classification was classified into five categories. There were 13 type 1, 24 type 2, 26 type 3, 9 type 4, 5 type 5. Clinical outcomes (JOA score) were evaluated at an average of 25 months. Results. The average Japanese Orthopaedic Association shoulder score all improved significantly. Forward elevation improved from 57° to 146.5° in type 1, 65.5° to 132.1° in type 2, 82° to 123.9° in type 3, 90.6° to 122.1° in type 4 and 91° to 130° in type 5. Improvement of External rotation 25° in type 1, 23.1° in type 2, 10.89°in type 3, 11.3° in type 4 and −7.3° in type 5. Internal rotation similarly improved between Hamada-Fukuda classification. Conclusion. In patients of type 1 and 2, our procedure could get a good ER recovery. However, in patients of type 3, 4, and 5, functional outcomes were partly inferior to type 1 and 2. Our procedure for type 1 and 2 CTA is one of useful methods


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 418 - 418
1 Dec 2013
Matsumoto K Tamaki T Miura Y Oinuma K Shiratsuchi H
Full Access

Introduction:. The lateral radiographs are useful in evaluation of the acetabular cup anteversion. However, this method was affected by variations in pelvic position and radiographic technique. In this study, we employed the ischial axis (IA) as an anatomical landmark on the lateral radiographs, and we investigated a relationship between IA and the anterior pelvic plane (APP) using three-dimensional computed tomography (3D-CT). Using these findings, we report a new method for accurate measurement of the acetabular cup anteversion on plain lateral radiographs using IA as an anatomical reference. Materials and Methods:. At first, preoperative3D-CT images were obtained in 109 patients who underwent total hip arthroplasty. The diagnosis was osteoarthritis in all patients. The angle between the IA (defined by a line connecting the anterior edge of the greater sciatic notch and the lesser sciatic notch) and APP (defined by the bilateral anterosuperior iliac spine and the symphysis) was measured on 3D-CT (Fig. 1). Secondly, postoperative lateral radiographs were obtained at 2 weeks, 4 weeks, 12 weeks, 24 weeks, and 52 weeks after surgery in 15 patients. The angle between a line tangential to the opening of the cup and a line perpendicular to APP was measured (Fig. 2). Three methods of acetebular cup position assessment were compared: 1) the present method, 2) Woo and Morrey method, and 3) software (2D template, Kyocera) method. Results:. The mean angle between IA and APP was 18.0 ± 3.5°. The mean acetabular cup anteversion measured using present method was 21.3°, Woo and Morrey method was 26.6°, and software method was 21.2°. The mean SDs of present method was 0.64°, Woo and Morrey method was 1.17°, and software method was 0.46°. Conclusions:. APP, considered as vertical in weight bearing, has a relatively consistent relationship between IA. The findings of this study provide a more consistent measurement of acetabular cup by reducing variation due to pelvic position


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 6 - 6
1 Oct 2014
Charbonnier C Chagué S Kolo F Lädermann A
Full Access

Shoulder instability and impingement are common in tennis players. During tennis, several impingements could occur: subcoracoid and anterosuperior impingements at the follow-through phase of forehand and the backhand preparation phase; subacromial and postero-superior impingements at the cocking phase of serve. The precise causes for these impingements remain unclear, but it is believed that repetitive contact, glenohumeral instability may play a role. Impingement and glenohumeral instability at critical tennis positions have never been dynamically evaluated in-vivo. The purpose of this study was to develop a patient-specific measurement technique based on motion capture and MRI to accurately determine glenohumeral kinematics (rotations and translations). The second objective was to evaluate impingements and stability in tennis. Shoulder MR arthrography and motion capture were performed in 10 tennis players. Motion data were recorded during tennis movements. Glenohumeral kinematics was computed from the markers trajectories using a global optimisation algorithm with loose constraints on joint translations (accuracy: translational error ≈3mm, rotational error <4°). The translations patterns computed with the model were in good agreement with previous works. The resulting computed motions were applied to the subject's shoulder 3D bony models reconstructed from MRI data. While simulating the shoulder joint, minimum humero-acromial, humero-coracoid and humero-glenoid distances were measured at critical tennis positions. Given the thickness of the potential impinged tissues, impingement was considered when the computed distance was <5 mm (<6 mm for the humero-acromial distance). During serve, glenohumeral stability was assessed at the cocking, deceleration and finish phases. Glenohumeral translation was defined as the anterior-posterior and superior-inferior motion of the humeral head centre relative to a glenoid coordinate system. Subluxation was defined as the ratio (in %) between the humeral head centre translation and the radius of the width (antero-posterior subluxation) or height (supero-inferior subluxation) of the glenoid surface. Instability was thus considered when the subluxation was >50%, corresponding to a loss of congruence superior to half the radius of the width (or height) of the glenoid. No subcoracoid impingement was detected. Antero-superior impingements were observed in two subjects (29%) during forehand. Anterior and lateral subacromial impingements occurred during the cocking phase of serve in three (29%) and four subjects (42%), respectively. Postero-superior impingements during the cocking phase of serve were the most frequent (7 subjects, 75%). In this position, glenohumeral translation was anterior (mean: 34%) and superior (mean: 13%). During the deceleration phase, anterior and superior translation varied between 8–57% and between 5–34%, respectively. During the finish phase, anterior translation was slightly more intense (mean: 44%), while superior translation remained low (mean: 1%). MRI revealed eleven rotator cuff lesions in five subjects, and six labral lesions in five subjects. Postero-superior impingement was frequent when serving. No instability could be noted. Tennis players presented frequent radiographic signs of structural lesions which seem to be mainly related to postero-superior impingement due to repetitive abnormal motion contacts. Our findings are consistent with this hypothesis. To our knowledge, this is the first study demonstrating that a dynamic and precise motion analysis of the shoulder is feasible using an external measurement system, such as motion capture


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 182 - 182
1 Mar 2013
Goto T Tamaki Y Hamada D Takasago T Egawa H Yasui N
Full Access

Introduction. Herniation pits had been considered as a normal variant, a cystic lesion formed by synovial invagination. On the contrary, it was also suggested that herniation pits were one of the diagnostic findings in femoroacetabular impingement (FAI) because of the high prevalence of herniation pits in the FAI patients. To date, the exact etiology is still unknown. The purpose of this study was to evaluate whether there is an association between the presence of herniation pits and morphological indicators of FAI based on computed tomography (CT) examination. Materials and methods. We reviewed the CT scans of 245 consecutive subjects (490 hips, age: 21–89 years) who had undergone abdominal and pelvic CT for reasons unrelated to hip symptom from September, 2010 to June, 2011. These subjects were mainly examined for abdominal disorders. We confirmed by the questionnaire survey that there were no subjects who had symptoms of hip joints. We reviewed them for the presence of herniation pits and the morphological abnormalities of the femoral head and acetabulum. Herniation pits were diagnosed when they were located at the anterosuperior femoral head-neck junction with a diameter of more than 3 mm. We measured following four signs as indicators for FAI: α angle, center edge angle (CE angle), acetabular index (AI), and acetabular version. Mann-Whitney U-test was used for statistical analysis. Results. Herniation pits were identified in 61 of the 245 subjects or, with respect to individual hips, in 85 (17%) of 490 hips. The prevalence of herniation pits in younger subjects (<60 years, 240 hips) and elderly subjects (≥60 years, 250 hips) were 16.3% and 18.4%, respectively. Among 85 hips, the mean diameter of herniation pits was 5.9 ± 2.4 mm and it was significantly larger (p<0.01) in the elderly subjects (7.1 ± 2.4 mm) than in the younger subjects (4.7 ± 1.7 mm). In terms of the α angle, there were significant differences between the group with (49.8 ± 16.6°) and without herniation pits (40.7 ± 6.7°) in the elderly subjects, whereas not significantly different among the younger subjects. Measurements of the acetabular coverage (CE angle, AI) and the acetabular version showed no significant difference between the subject with and without herniation pits. Discussion. In the present study, the prevalence of herniation pits was 17% in asymptomatic Japanese general population. The fact that the size of the herniation pits enlarge with age may suggest these cystic lesions have degenerative characteristics with no association with FAI. Although large α angles have been recognized as a predictor of cam impingement especially in young population, it was impossible to show the relationship between α angle and presence of herniation pits in young population. These results suggest that the presence of the herniation pits has little relevance to FAI diagnosis


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 203 - 203
1 Mar 2013
Iwai S Kabata T Maeda T Kajino Y Kuroda K Fujita K Tsuchiya H
Full Access

Background. Rotational acetabular osteotomy (RAO) is an effective treatment option for symptomatic acetabular dysplasia. However, excessive lateral and anterior correction during the periacetabular osteotomy may lead to femoroacetabular impingement. We used preoperative planning software for total hip arthroplasty to perform femoroacetabular impingement simulations before and after rotational acetabular osteotomies. Methods. We evaluated 11 hips in 11 patients with available computed tomography taken before and after RAO. All cases were female and mean age at the time of surgery was 35.9 years. All cases were early stage osteoarthritis without obvious osteophytes or joint space narrowing. Radiographic analysis included the center-edge (CE) angle, Sharp's acetabular angle, the acetabular roof angle, the acetabular head index (AHI), cross-over sign, and posterior wall sign. Acetabular anteversion was measured at every 5 mm slice level in the femoral head using preoperative and postoperative computed tomography. Impingement simulations were performed using the preoperative planning software ZedHip (LEXI, Tokyo, Japan). In brief, we created a three-dimensional model. The range of motion which causes bone-to-bone impingement was evaluated in flexion (flex), abduction (abd), external rotation in flex 0°, and internal rotation in flex 90°. The lesions caused by impingement were evaluated. Results. In the radiographic measurements, the CE angle, Sharp's angle, acetabular roof angle, and AHI all indicated improved postoperative acetabular coverage. The cross-over sign was recognized pre- and postoperatively in each case. Acetabular retroversion appeared in one case before RAO and in three cases after RAO. Preoperatively, there was a tendency to reduce the acetabular anteverison angle in the hips from distal levels to proximal. In contrast, there was no postoperative difference in the acetabular anteversion angle at any level. In our simulation study, bone-to-bone impingement occurred in flex (preoperative/postoperative, 137°/114°), abd (73°/54°), external rotation in flex 0°(34°/43°), and internal rotation in flex 90°(70°/36°). Impingement occurred within internal rotation 45°in flexion 90°in two preoperative and eight postoperative cases. The impingement lesions were anterosuperior of the acetabulum in all cases. Discussion. It is easy to make and assess an impingement simulation using preoperative planning software, and our data suggest the simulation was helpful in a clinical setting, though there were some remaining problems such as approximation of the femoral head center and differences in femur movement between the simulation and reality. In the postoperative simulation there was a tendency to reduce the range of motion in flex, abd, and internal rotation in flex 90°. There was a correlation between acetabular anteversion angle and flex. Since impingement occurred within internal rotation 45°in flexion 90°in eight postoperative simulations, we consider there is a strong potential for an increase in femoroacetabular impingement after RAO


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 3 | Pages 408 - 409
1 Mar 2005
Thomas S Theologis T Wainwright AM

We present simple but effective retractors used in pairs to expose the sciatic notch during Salter innominate osteotomy. We have found them to be useful for a wide range of procedures requiring similar exposure. We present them here in tribute to the memory of the designer Mercer Rang.