Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 12 | Pages 1703 - 1709
1 Dec 2010
Aoki H Nagao Y Ishii S Masuda T Beppu M

In order to evaluate the relationship between acetabular and proximal femoral alignment in the initiation and evolution of osteoarthritis of the dysplastic hip, the acetabular and femoral angles were calculated geometrically from radiographs of 62 patients with pre-arthrosis and early osteoarthritis. The sum of the lateral opening angle of the acetabulum and the neck-shaft angle was defined as the lateral instability index (LII), and the sum of the anterior opening angle of the acetabulum and the anteversion angle of the femoral neck as the anterior instability index (AII). These two indices were compared in dysplastic and unaffected hips. A total of 22 unilateral hips with pre-arthrosis were followed for at least 15 years to determine whether the two indices were associated with the progression of osteoarthritis. The LII of the affected hips (197.4 (. sd. 6.0)) was significantly greater than that of the unaffected hips (1830 (. sd. 6.9)). A follow-up study of 22 hips with pre-arthrosis showed that only the LII was associated with progression of the disease, and an LII of 196 was the threshold value for this progression


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 356 - 356
1 Jul 2014
Dean B Murphy R Wheway K Watkins B Franklin S Javaid K Carr A
Full Access

Summary Statement. The peripheral neuronal phenotype is significantly altered in rotator cuff tendinopathy (RCT) with a clear upregulation of the Glutaminergic system being present in disease. Introduction. Shoulder pain is the third most frequent cause of chronic musculoskeletal pain in the community and is usually caused by rotator cuff tendinopathy (RCT). The central and peripheral nervous system play an important role in both tissue homoeostasis and tendon healing. The Glutaminergic system is of key importance in driving the peripheral and central neuronal changes which increase the body's sensitivity to pain (1, 2). No study to date has investigated the role of the glutaminergic system in human RCT. We hypothesised that the peripheral neuronal phenotype would be altered in RCT, and would vary according to disease stage as measured by size of tear. The term ‘peripheral neuronal phenotype’ is used to refer to refer to specific characteristics of the peripheral nervous system, neuronal mediators and the receptors for these mediators in peripheral tissue. Methods. Rotator cuff tendon specimens were obtained from 64 patients undergoing the surgical repair of rotator cuff tears. Control supraspinatus tendon was obtained from 10 patients undergoing surgery for anterior instability using an ultrasound guided biopsy technique. Patients with rotator cuff tears were divided into 2 groups: the small/medium group (≤ 3cm size) and the large/massive group (>3cm size). The tendon tissue was histologically stained using Haematoxylin and Eosin, and immunohistochemically stained with primary antibodies visualised using 3, 3′-diaminobenzidine (DAB). Image analysis was performed blindly by 2 observers using Image-J to quantify the amount of DAB positive staining. Data was non-parametric in distribution and Mann-Whitney U tests were carried out using SPSS with significance levels set at a minimum of p<0.025. Results. There were significant changes in the peripheral neuronal phenotype in RCT. The Glutaminergic system was significantly up-regulated with an increase in Glutamate and changes in several related receptors in disease versus control (p<0.01). The standard deviation in nuclei count and mean cell nuclear area were both increased in disease (p<0.01) compared to controls. Tendon vascularity and cell proliferation were reduced in disease vs control (p<0.01). There were no significant correlations between pain scores and the peripheral tissue markers. Discussion/Conclusion. The peripheral neuronal phenotype is significantly altered in rotator cuff tendinopathy (RCT) with clear changes in the Glutaminergic system in disease. These findings are novel and improve our understanding of pain and tissue healing in RCT, potentially providing novel therapeutic targets


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 95 - 95
1 Jan 2017
Rivière C Shah H Auvinet E Iranpour F Harris S Cobb J Howell S Aframian A
Full Access

Trochlear geometry of modern femoral implants is designed for mechanical alignment (MA) technique for TKA. The biomechanical goal is to create a proximalised and more valgus trochlea to better capture the patella and optimize tracking. In contrast, Kinematic alignment (KA) technique for TKA respects the integrity of the soft tissue envelope and therefore aims to restore native articular surfaces, either femoro-tibial or femoro-patellar. Consequently, it is possible that current implant designs are not suitable for restoring patient specific trochlea anatomy when they are implanted using the kinematic technique, this could cause patellar complications, either anterior knee pain, instability or accelerated wear or loosening. The aim of our study is therefore to explore the extent to which native trochlear geometry is restored when the Persona. ®. implant (Zimmer, Warsaw, USA) is kinematically aligned. A retrospective study of a cohort of 15 patients with KA-TKA was performed with the Persona. ®. prosthesis (Zimmer, Warsaw, USA). Preoperative knee MRIs and postoperative knee CTs were segmented to create 3D femoral models. MRI and CT segmentation used Materialise Mimics and Acrobot Modeller software, respectively. Persona. ®. implants were laser scanned to generate 3D implant models. Those implant models have been overlaid on the 3D femoral implant model (generated via segmentation of postoperative CTs) to replicate, in silico, the alignment of the implant on the post-operative bone and to reproduce in the computer models the features of the implant lost due to CT metal artefacts. 3D models generated from post-operative CT and pre-operative MRI were registered to the same coordinate geometry. A custom written planner was used to align the implant, as located on the CT, onto the pre-operative MRI based model. In house software enabled a comparison of trochlea parameters between the native trochlea and the performed prosthetic trochlea. Parameters assessed included 3D trochlear axis and anteroposterior offset from medial facet, central groove, and lateral facet. Sulcus angle at 30% and 40% flexion was also measured. Inter and intra observer measurement variabilities have been assessed. Varus-valgus rotation between the native and prosthetic trochleae was significantly different (p<0.001), with the prosthetic trochlear groove being on average 7.9 degrees more valgus. Medial and lateral facets and trochlear groove were significantly understuffed (3 to 6mm) postoperatively in the proximal two thirds of the trochlear, with greatest understuffing for the lateral facet (p<0.05). The mean medio-lateral translation and internal-external rotation of the groove and the sulcus angle showed no statistical differences, pre and postoperatively. Kinematic alignment of Persona. ®. implants poorly restores native trochlear geometry. Its clinical impact remains to be defined