Advertisement for orthosearch.org.uk
Results 1 - 14 of 14
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 86 - 86
1 Jan 2017
Putzer D Dobersberger M Coraça-Huber D Ammann C Schmölz W Nolger M
Full Access

Allografts are used to compensate for bone defects resulting from revision surgery, tumor surgery and reconstructive bone surgery. While it is well known that the reduction of fat content of allografts increases mechanical properties, the content of liquids were not assessed with known grain size distribution so far. The aim of the study was to compare the mechanical properties of dried allografts (DA) to allografts mixed with a saline solution (ASS) to allografts mixed with blood (AB) having a similar grain size distribution. Fresh-frozen morsellized bone chips were cleaned chemically, sieved and reassembled in specific portions with known grain size distribution. A uniaxial compression was used to assess the yield limit of the three groups before and after compaction with a fall hammer apparatus. No statistically significant difference could be found between all three groups for the yield limit (p=0.339) before compaction. After compaction no statistically significant difference could be found between DA and ASS (p=0.339) and between ASS and AB (p=0.554). AB showed a statistically significant higher yield limit than DA (p=0.022). At the yield limit 3 outliers were removed in DA, 1 in ASS and 1 in AB before compaction and 2 in DA and 1 in AB after compaction. Excluding the effect of the grain size distribution on the mechanical properties it was shown that allografts have a lower yield limit, when lipids are present. The liquid content of allografts seems to play an inferior role as no statistically significant difference could be found between DA and ASS. It is suggested in accordance with other studies to chemical clean allografts before implantation to reduce the contamination risk and the fat content. An optimum liquid level still remains to be defined. The considerations here described are relevant for filling up bigger bone defects, while in smaller defects the differences between different preparation methods may be less prominent


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 16 - 16
4 Apr 2023
Luk J
Full Access

Despite the growing success of OCA transplantation in treating large articular cartilage lesions in multiple joints, revisions and failures still occur. While preimplantation subchondral drilling is intended to directly decrease allograft bioburden and has been associated with significant improvements in outcomes after OCA transplantation, the effects of size, number, and spacing of subchondral bone drill sites have not been fully evaluated. This study aimed to investigate the effects of drill size with or without pulse-lavage of OCA subchondral bone by quantifying remnant marrow elements using histomorphometry.

With IRB and ACUC approvals, human and canine OCAs were acquired for research purposes. Portions of human tibial plateau OCAs acquired from AATB-certified tissue banks that would otherwise be discarded were recovered and sectioned into lateral and medial hemiplateaus (n=2 each) with a thickness of 7 mm. Canine femoral condyles and tibial plateaus were split into lateral and medial components with a thickness of 7 mm (n=8). Using our clinical preimplantation preparation protocol, holes were drilled into the subchondral bone of each condyle and hemiplateau OCA using either 1.6 mm OD or 3.2 mm OD drill bits from the cut surface to the cortical subchondral bone plate. One femoral condyle and one hemiplateau per drill bit size were pulse-lavaged while the corresponding OCAs were not. The mean total %-fill remaining marrow elements for each treatment group was calculated.

Little to no quantifiable bone marrow element retention was noted to remain within the subchondral bone of human or canine OCA specimens after subchondral drilling of allograft bone with either drill bit size evaluated and with or without pulse-lavage. The %-fill was consistent across zones, ranging from 1-5%.

This project was designed to provide a preliminary histologic evaluation of the effects of drill size on OCA preimplantation preparation efficacy based on amount of remaining bone marrow elements in human and canine femoral condyle and tibial plateau specimens. Based on these initial findings, choice of drill bit size for OCA subchondral drilling may need to be based on the associated biomechanical effects rather than effects on donor bone marrow element removal.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 46 - 46
1 Nov 2021
Luk J Bozynski C Stoker A Stannard J Teixeiro E Cook J
Full Access

Introduction and Objective

Osteochondral allograft (OCA) transplants have been used clinically for more than 40 years as a surgical option for joint restoration, particularly for young and active patients. While immediate graft rejection responses have not been documented, it is believed that the host's immunological responses may directly impact OCA viability, incorporation, integrity, and survival, and therefore, it is of the utmost importance to further optimize OCA transplantation outcomes. The influences of sub-rejection immune responses on OCA transplantation failures have not been fully elucidated therefore aimed to further characterize cellular features of OCA failures using immunohistochemistry (IHC) in our continued hopes for the successful optimization of this valuable surgical procedure.

Materials and Methods

With IRB approval, osteochondral tissues that were resected from the knee, hip, and ankle of patients undergoing standard-of-care revision surgeries (N=23) to treat OCA failures and tissues from unused portions of OCAs (N=7) that would otherwise be discarded were recovered. Subjective histologic assessments were performed on hematoxylin and eosin-stained and toluidine blue-stained sections by a pathologist who was blinded to patient demographics, outcomes data, and tissue source. IHC for CD3, CD8, and CD20 were performed to further characterize the and allow for subjective assessment of relevant immune responses.


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 1 | Pages 161 - 166
1 Jan 1997
Deijkers RLM Bloem RM Petit PLC Brand R Vehmeyer SBW Veen MR

We analysed the bacterial contamination of 1999 bone allografts retrieved from 200 cadaver donors under sterile operating conditions. The effect of various factors on the relative risk of contamination was estimated using a multiple logistic regression model.

Organisms of low pathogenicity were cultured from 50% of the grafts and of high pathogenicity from 3%. The risk of contamination with low pathogenic organisms (mainly skin commensals) increased by a factor of 1.6 for each member added to the procurement team. The risk of contamination with high pathogenic organisms (mainly contaminants from the gastrointestinal tract) was 3.4 times higher in donors with a traumatic cause of death and 5.2 times higher in those with a positive blood culture. Preceding organ procurement did not significantly influence the risk of contamination. Rinsing the graft with an antibiotic solution was not an effective decontamination method.

The major source of contamination is exogenous and is strongly influenced by the procurement team. Contamination from endogenous sources can be controlled by donor selection. We discuss methods that can be used to decrease contamination and the rate of discarding of bone allografts.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 51 - 51
1 Nov 2018
Negri S Regis D Sandri A Magnan B
Full Access

Introduction. The management of periprosthetic pelvic bone loss is a challenging problem in hip revision surgery. This study evaluates the minimum 10-year clinical and radiographic outcome of major column structural allografts combined with the Burch-Schneider antiprotrusio cage for acetabular reconstruction. Methods. From January 1992 to August 2005, 106 hips with periprosthetic osteolysis underwent acetabular revision using massive allografts and the Burch-Schneider antiprotrusio cage. Forty-five patients (49 hips) died for unrelated causes without further surgery. Fifty-nine hips in 59 patients underwent clinical and radiographic evaluation at an average follow-up of 15.1 years. There were 17 male and 42 female patients, with age ranging from 29 to 83 years (mean 59). Results. Ten hips required rerevision because of infection (3), aseptic loosening (6), and flange breakage (1). Moreover, 4 cages showed x-ray signs of instability with severe bone resorption. The survivorship of the Burch-Schneider cage at 21.9 years with removal for any reason or radiographic migration and aseptic or radiographic failure as the end points were 76.3 and 81.4, respectively. The average Harris hip score improved from 33.2 points preoperatively to 75.7 points at the latest follow-up (p < 0.001). Discussion. In hip revision surgery, severe deficiency of pelvic bone stock is a critical concern because of the difficulty in providing a stable and durable fixation of the prosthesis. Although antiprotrusio cages have a limited role in acetabular revision, the use in association with massive allografts in extended bone loss demonstrated highly successful long-term results, enabling bone stock restoration and cup stability.


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 2 | Pages 270 - 275
1 Mar 1996
Hooten JP Engh CA Heekin RD Vinh TN

Two acetabula which contained large bone allografts introduced at revision arthroplasty were obtained at post-mortem. The allografts had been placed in superior defects to support cementless acetabular components, and both hips were functioning well at the time of death. Clinical radiographs demonstrated apparent healing of graft to host bone, no graft collapse and stability of the acetabular components. Microscopic examination of sections through these specimens showed that the bulk allografts were encapsulated in fibrous tissue. Vascularity was increased at the host-graft interface, but there was limited evidence of bone union between the graft and the host. In the few areas where union had occurred, revascularisation extended no more than 2 mm beyond the graft-host interface.

Within the body of the graft, the acellular matrix of trabecular bone maintained structural integrity up to 48 months after surgery. In areas where the allograft was adjacent to an implant, there was fibrous tissue orientated parallel to the implant surface. The acetabulum which contained a porous-coated component showed evidence of bone growth into the porous surface where it was in contact with viable host bone. No ingrowth occurred in areas where the porous coating was in contact with the graft. Although the grafts were functioning well, allograft revascularisation and remodelling were minimal, and the radiological appearance of healing did not correlate with histological findings.


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 1 | Pages 38 - 41
1 Jan 1996
Gouin F Passuti N Verriele V Delecrin J Bainvel JV

We performed biopsies during reoperation for minor complications in two active young patients 9 and 19 months after massive bone allograft implantation for bone tumour. The grafts were dead and resorption-apposition activity, when present, was predominantly in subperiosteal areas. Inflammatory infiltration was very seldom found.

Features considered as ‘microfractures’ or ‘microcracks’ were noted in the cortical ring together with the formation of woven bone, in areas with remodelling. Such cracks are likely to be of mechanical origin and do not inevitably lead to complications.


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 6 | Pages 1008 - 1013
1 Nov 1997
Ghazavi MT Pritzker KP Davis AM Gross AE

We used fresh small-fragment osteochondral allografts to reconstruct post-traumatic osteochondral defects in 126 knees of 123 patients with a mean age of 35 years. At a mean follow-up of 7.5 years (2 to 20), 108 knees were rated as successful (85%) and 18 had failed (15%).

The factors related to failure included age over 50 years (p = 0.008), bipolar defects (p < 0.05), malaligned knees with overstressing of the grafts, and workers’ compensation cases (p < 0.04). Collapse of the graft by more than 3 mm and of the joint space of more than 50% were seen more frequently in radiographs of failed grafts.

Our encouraging clinical results for fresh small-fragment osteochondral allografts show that they are indicated for unipolar post-traumatic osteochondral defects of the knee in young active patients.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 19 - 19
1 Jul 2014
Hart R Komzák M Puskeiler M Jajtner P
Full Access

Background

Posterolateral fusion (PLF) is a commonly accepted surgical procedure and overall the most common technique performed to obtain fusion in the lumbar spine. Harvesting autologous bone from the iliac crest is associated with increased operation time, blood loss, and chronic donor site pain. Allograft material has an insufficient osteoinductive potential. Bone marrow concentrate (BMC) could be an option how to promote allograft PLF healing. The purpose of the presented study was to investigate the validity of BMC addition to allografts in instrumented lumbar PLF surgery.

Methods

The study was prospective, randomised, controlled and blinded. Eighty patients with degenerative disease of the lumbar spine underwent instrumented (S4, Aesculap, Tuttlingen, Germany) lumbar or lumbosacral PLF. In forty cases, the PLF was done with spongious allograft chips alone (Group I). In another forty cases, spongious allograft chips were mixed with BMC (Group II), where the mesenchymal stem cell (MSCs) concentration was 1.74 × 104/L at average (range, 1.06–1.98 × 104/L). Patients were scheduled for anteroposterior and lateral radiographs at 12 and 24 months after the surgery and for CT scanning at 24 months after the surgery. Fusion status and the degree of mineralization of the fusion mass were evaluated separately by two radiologists blinded to patient group affiliation.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 46 - 46
1 Jan 2017
Errani C Leone G Cevolani L Spazzoli B Frisoni T Donati D
Full Access

The purpose of our study was to identify possible risk factors of patients with GCT of the long bones after curettage and packing the bone cavity with bone cement or bone allografts.

We retrospectively reviewed the records of 249 patients with GCT of the limbs treated at Musculoskeletal Oncology Department of our institution between 1990 and 2013, confirmed histologically and recorded in the Bone Tumor Registry. We reviewed 219 cases located in the lower limb and 30 of the upper limb. This series includes 135 females and 114 males, with mean age 32 years (ranging 5 to 80 yrs). According to Campanacci's grading system, 190 cases were stage 2, 48 cases stage 3, and 11 cases stage 1. Treatment was curettage (intralesional surgery). Local adjuvants, such as phenol and cement, were used in 185 cases; whereas in the remaining 64 cases the residual cavity was filled with allografts or autografts only.

Oncological outcome shows 203 patients alive and continuously disease-free (CDF), 41 patients NED1 after treatment of local recurrence (LR), 2 patients NED1 after treatment of lung metastases, 2 AWD with lung metastases. One patient died of unrelated causes (DOD).

LR rate was 15.3% (38 pts). Lung metastases rate was 1.6% (4 pts). In patients treated by curettage and cement (185 cases) LR was 12% (22 pts). Conversely, in patients treated curettage and bone allografts it was higher (16/64 cases), with an incidence of 25% of cases (p=0.004). Oncological complications seemed to be related with site, more frequently occurring in the proximal femur (p=0.037). LR occurred only in stage 2 or 3 tumors without statistical significance (p>0.05). The mean interval between the first surgical treatment and LR was 22 months (range: 3–89 mos). However, in the multivariate analysis no significant statistical effect on local recurrence rate could be identified for gender, patient's age, Campanacci's grading, or cement vs allografts. The only independent risk factor related to the local recurrence was the site, with a statistical significance higher risk for patients with GCT of the proximal femur (p= 0.008).

Our observation on the correlation of tumor location and risk of local recurrence is new. Therefore, special attention must be given to GCTs in the proximal femur. In fact, primary benign bone tumors in the proximal femur are difficult to treat due to the risk of secondary osteonecrosis of the femoral head or pathologic fracture.

Numerous methods of reconstructions have been reported. Among these, total hip arthroplasty (THA) or bipolar hip arthroplasty (BHA) should be avoided when possible as more cases are observed in young patients.

Therefore, we do not suggest different approach for the proximal femur. GCT in the proximal femur is much more difficult to treat than in other sites, but if curettage is feasible, the best way is to save the joint with a higher risk of local recurrence, knowing that the sacrifice of the hip articulation in case of recurrence is always possible with THA or BHA.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 41 - 41
1 Apr 2018
Kara A Kizmazoglu C Husemoglu B Bilici G Kocturk S Havitcioglu H
Full Access

Dura mater is a thick membrane that is the outermost of the three layers of the meninges that surround the brain and spinal cord. Appropriate dural healing is crucial to prevent cerebrospinal fluid leaks but the entire process has been barely understood so far. Understanding of dural healing and tissue neoformation over the dural grafts, which are usually used for duraplasty, is still partial. Therefore, implantation of decellular dura mater (DM) to recipient from different donor and vitalization with recipient”s mesenchymal stem cells for the treatment of tissue on transplantation process is significant approach. This approach prevents immunological reactions and provides long-term stabilization. According to this study, it is believed that this approach will provide DM healing and become crucial in DM transplantation. The aim of this study was to develop a new construct by tissue engineering of the human DM based on a decellular allograft. Thus human DM collected from forensic medicine and decellularized using the detergent sodium dodecyl sulfate (SDS) in the multiple process of physical, enzimatic and chemical steps. Decellularization were exposing the tissue to freeze-thaw cycles, incubation in hypotonic tris-HCl buffer, 0.1% (w/v) SDS in hypotonic buffer and hypertonic buffer followed by disinfection using 0.1% (v/v) peracetic acid and final washing in phosphate-buffered saline. As a result of all these processes, cellular components of DM were removed by preserving the extracellular matrix without any significant loss in mechanical properties. Based on the histological analysis of the decellularized DM revealed the absence of visible whole cells. Collagen and glycosaminoglycan (GAG) contents of decellular DM evaluated histological staining by Masson Trichrome and Alcian blue respectively. Also biochemical tests were carried out by spectrophotometry (Quickzym Biosciences, The Netherlands) and total GAG content were analyzed by 1.9 dimethylmethylene blue assay. The histoarchitecture was unchanged, and there were no significant changes of total collagen and GAG content. Biomechanical properties were determined by tensile tests, which has confirmed the retention of biomechanical properties following decellularization. The mean tensile strengths were 7,424±4,20 MPa for control group, 5,254±2,068 MPa for decellularization group. There was no statistically significant difference between tensile strength (p=0,277) and tissue thickness (p=0, 520) for both group. In conclusion, this study has developed biomechanically functional decellularized DM scaffold for use in DM repair. In addition, this study is a part of the progressing study and additional studies investigating the biocompatibility performance of the decellularized DM scaffold and there is need for in vivo studies. Keywords. Dura mater, Decellularization, Allografts, Scaffolds, Tissue Engineering


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 116 - 116
1 Jan 2017
Maurel D Le Nihouannen D Aid R Delmond S Letourneur D Amédée J Catros S
Full Access

Bone grafts are crucial for the treatment of bone defects caused by tumor excision. The gold standard is autograft but their availability is limited. Allografts are an alternative, but there is a risk of rejection by the immune system. The tissue engineering field is trying to develop vascularized bone grafts, using innovative biomaterials for surgery applications. While the gold standard in bone graft in dentistry is the use of decellularized bovine bone particles (Bio-Oss®), our work has produced a polysaccharide-based composite matrix (composed of PUllulan, DextraNand particles of HydroxyApatite (PUDNHA), as a new scaffold for promoting bone formation and vascularization of the tissue. In the context of bone tissue regeneration, the function of osteoblast and endothelial cells has been extensively studied, while the impact of osteocytes has been regarded as secondary. Nonetheless, the osteocytes represent 90–95% of bone cells and are responsible for orchestration of bone remodeling. Here, we propose an original method to analyze the interaction between bone and biomaterials, after in vivo implantation of the matrix PUDNHA in an experimental sheep model. Our objectives are to analyze the network established by osteocytes in the newly formed tissue induced by the matrix, as well as their interactions with the blood vessels. Sheep have been implanted with the Bio-Oss® or the PUDNHA using the sinus lift technique. After 3 (3M) and 6 months (6M), the animals were euthanazied and the explants were fixed, analyzed by X-ray, embedded in Methylmetacrylate/Buthylmetacrylate and analyzed histologically by Trichrome staining. Thereafter, the samples (n=3/group) were polished using different sand papers. A final polish was realized using a 1µm Diamond polishing compound. The blocks were incubated 10 or 30s with 37% phosphoric acid to remove the mineral on the surface, then dipped in 2.6% sodium hypochlorite to remove the collagen. The samples were air dried overnight, metallized with Gold palladium the following day, before being imaged with a SEM. As expected, PUDNHA activates bone regeneration in this sinus lift model after 3M and 6M. X-ray analysis and histological data revealed more bone regeneration at 6M versus 3M in both groups. With this acid eching technique, we were able to visualize the interface of bone with the biomaterials. This treatment coupled with SEM analysis, confirmed the increase of bone formation with time of implantation in both groups. In addition, SEM images revealed that osteocyte alignment and their network were different in the new regenerated bone compared to the host bone. Moreover, images showed the direct contact of the osteocytes with the blood vessels formed in the new regenerated bone. This acid eching technique can be useful in the field of biomaterials to see the relationship between cells, blood vessels and the material implanted and understand how the new bone is forming around the different biomaterials


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 80 - 80
1 Jan 2017
Cavallo M Maglio M Parrilli A Martini L Guerra E Pagani S Fini M Rotini R
Full Access

Autologous bone grafting is a standard procedure for the clinical repair of skeletal defects, and good results have been obtained. Autologous vascularized bone grafting is currently the procedure of choice because of high osteogenic potential and resistance against reabsorption. Disadvantages of this procedure include limited availability of donor sites, clinical difficulty in handling, and a failure rate exceeding 10%. Allografts are often used for massive bone loss, but since only the marginal portion is newly vascularized after the implantation non healing fractures are often reported, along with a graft reabsorption. To overcome these problems, some studies in literature tried to conjugate bone graft and vascular supply, with encouraging results. On the other side, several studies in literature reported the ability of bone marrow derived cells to promote neo-vascularization. In fact, bone marrow contains not only hematopoietic stem cells (HSCs) and MSCs as a source for regenerating tissues but also accessory cells that support angiogenesis and vasculogenesis by producing several growth factors. In this scenario a new procedure was developed, consisting in an allogenic bone graft transplantation in a critical size defect in rabbit radius, plus a deviation at its inside of the median artery and vein with a supplement of autologous bone marrow concentrate on a collagen scaffold. Twenty-four New Zealand male white rabbits (2500–3000 g) were divided into 2 groups, each consisting of 12 animals. Surgeries were performed as follow:. −. Group 1 (#12): allogenic bone graft (left radius) / allogenic bone graft + vascular pedicle + autologous bone marrow concentrate (right radius). −. Group 2 (#12): sham operated (left radius)/ allogenic bone graft + vascular pedicle (right radius). For each group, 3 experimental time: 8, 4 and 2 weeks (4 animals for each time). The bone used as graft was previously collected from an uncorrelated study. An in vitro evaluation of bone marrow concentrate was performed in all cases, and at the time of sacrifice histological and histomorphometrical assessment were performed with immunohistochemical assays for VEGF, CD31 e CD146 to highlight the presence of vessels and endothelial cells. Micro-CT Analysis with quantitative bone evaluation was performed in all cases. The bone marrow concentrate showed a marked capability to differentiate into osteogenic, chondrogenic and agipogenic lineages. No complications such as infection or intolerance to the procedure were reported. The bone grafts showed only a partial integration, mainly at the extremities in the group with vascular and bone marrow concentrate supplement, with a good and healthy residual bone. immunohistochemistry showed an interesting higher VEGF expression in the same group. Micro CT analysis showed a higher remodeling activities in the groups treated with vascular supplement, with an area of integration at the extremities increasing with the extension of the sacrifice time. The present study suggests that the vascular and marrow cells supplement may positively influence the neoangiogenesis and the neovascularization of the homologous bone graft. A longer time of follow up and improvement of the surgical technique are required to validate the procedure


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 320 - 325
1 Feb 2010
Wang G Yang H Li M Lu S Chen X Cai X

In a rabbit model we investigated the efficacy of a silk fibroin/hydroxyapatite (SF/HA) composite on the repair of a segmental bone defect. Four types of porous SF/HA composites (SF/HA-1, SF/HA-2, SF/HA-3, SF/HA-4) with different material ratios, pore sizes, porosity and additives were implanted subcutaneously into Sprague-Dawley rats to observe biodegradation. SF/HA-3, which had characteristics more suitable for a bone substitite based on strength and resorption was selected as a scaffold and co-cultured with rabbit bone-marrow stromal cells (BMSCs). A segmental bone defect was created in the rabbit radius. The animals were randomised into group 1 (SF/HA-3 combined with BMSCs implanted into the bone defect), group 2 (SF/HA implanted alone) and group 3 (nothing implanted). They were killed at four, eight and 12 weeks for visual, radiological and histological study.

The bone defects had complete union for group 1 and partial union in group 2, 12 weeks after operation. There was no formation of new bone in group 3. We conclude that SF/HA-3 combined with BMSCs supports bone healing and offers potential as a bone-graft substitute.