header advert
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 122 - 122
1 May 2016
Dong N Zhu Z Song L Wang A Zhou Y
Full Access

Introduction. Mechanical properties of irradiated Ultra High Molecular Weight Polyethylene (UHMWPE) after aging have been well documented. However there was no sufficient data for the dimensional change due to irradiation and aging. This change may have adverse effects to the implant modular locking mechanism. The purpose of this study was to characterize the dimensional change of UHMWPE after irradiation and aging. Materials and Method. Total (30) ø15mm × 50mm virgin GUR 1050 UHMWPE rods were cleaned, dried, inspected, vacuum packaged and stored in 20°C environment for 2 days. Among them, (20) samples were measured along the 50mm length at 20°C +/-2°C before and after two conditions: 1, (10) were submerged in 40°C DI water for 2 hours and dried in 40°C to simulate the cleaning process and 2, (10) were soaked in 37°C saline for 14 days to simulate initial in-vivo environment. Remaining (10) samples were measured in the same way after irradiation of 30KGy dosage and then measured again after soaking in 37°C saline for 14 days to simulate the actual radiation sterilization and in-vivo soaking conditions. Same samples were measured once more after accelerated aging per ASTM-1980-07 for 80 days to simulate the 3 year in vivo life. The differences in measurements between virgin and end conditions were documented as the percentage dimensional change. After the measurements, in the groups of DI water, saline soaking and radiation + aging, (3) samples were randomly selected for DSC measurements. The results were compared with dimensional measurements. Statistical analysis was performed by the student t test to compare virgin condition and the conditions after each treatment. 95% significance level was assumed. Results. As shown in Table 1, after water wash and saline soaking, the average dimensions increased but not statistically significant. Radiation alone caused the net decrease in sample dimensions and remained in negative after a saline soaking. Further significant dimensional decrease (P<0.05) occurred after aging. Increased DSC % crystallinity was found in the aged samples. Discussion. Study showed the net dimensional change of UHMWPE was shrinkage under simulated in-vivo enviroment. Aging caused further significant shrinkage which was likely related to the elevation of crytallinity. Significance. With this shrinkage factor, the design of modular poly components may need to be compensated to avoid the loosening of modular components in-vivo condition


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 29 - 29
1 May 2016
McEntire B Bal B Rahaman M Pezzotti G
Full Access

Introduction

The in vivo evolution of surface material properties is important in determining the longevity of bioceramics. Fracture toughness is particularly relevant because of its role in wear resistance. Some bioceramics, such as zirconia (ZrO2) undergo in vivo phase transformation, resulting in a marked reduction in toughness and commensurate increased wear. Here, we investigated the effect of accelerated aging on the surface toughness of alumina (Al2O3), zirconia-toughened alumina (ZTA), and silicon nitride (Si3N4) femoral heads, in order to identify the optimal ceramic material for in vivo implantation and long-term durability.

Materials

A newly developed Raman microprobe-assisted indentation method was applied to evaluate and compare surface fracture toughness mechanisms operative in Si3N4 (Amedica Corporation, Salt Lake City, UT, USA), Al2O3 and ZTA (BIOLOX® forte, and delta, respectively, CeramTec, GmbH, Plochingen, Germany) bioceramics. The Al2O3 and ZTA materials have long established histories in total hip arthroplasty; whereas Si3N4 has been newly developed for this purpose. The improved method proposed here consisted in coupling the “traditional” indentation technique with quantitative assessments of microscopic stress fields by confocal Raman microprobe piezo-spectroscopy. Concurrently, crack opening displacement (COD) profiles were also monitored by Raman spectroscopy. Toughness measurements were determined using both as-received and hydrothermally exposed (100–121°C for up to 300 hours) femoral heads.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 115 - 115
1 May 2012
Stubbs G
Full Access

The suggestion of a meniscal tear produces a pavlovian response in the orthopaedic surgeon. However, meniscal signal anomalies and associated changes become common with age in symptom free knees. T he issue for the IME requested to assess workers with painful knees is to determine if the MRI changes represent a painful injury and if the treatment planned (usually arthroscopy) may, in fact, be harmful.

MRI signal changes are assessed on the likelihood they predict for unstable meniscal tears. Some patterns of meniscal tears are benign. Associated changes such as baker's cyst and ligament thickening are also common but are poor predictors of symptomatic tears. Preclinical osteoarthritis has a high incidence of associated meniscal change and arthroscopic menisectomy may accelerate osteoarthritis progression.

Clinical tests have variable specificity and sensitivity but in combination with an understanding of the patterns of MRI signal can be combined to predict which meniscal tears would benefit from arthroscopic surgery, which injuries would do as well with non-operative treatment and which patterns predict deterioration after surgery.

As the views of the IME are often contrary to the surgeon, a comprehensive bibliography is provided for any who need to argue their case. As the topic is information and image dense, a CD ROM will be distributed.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 81 - 81
1 Jul 2020
Wang F Sun Y Ke H
Full Access

Osteoporosis accounts for a leading cause of degenerative skeletal disease in the elderly. Osteoblast dysfunction is a prominent feature of age-induced bone loss. While microRNAs regulate osteogenic cell behavior and bone mineral acquisition, however, their function to osteoblast senescence during age-mediated osteoporosis remains elusive. This study aims to utilize osteoblast-specific microRNA-29a (miR-29a) transgenic mice to characterize its role in bone cell aging and bone mass. Young (3 months old) and aged (9 months old) transgenic mice overexpressing miR-29a (miR-29aTg) driven by osteocalcin promoter and wild-type (WT) mice were bred for study. Bone mineral density, trabecular morphometry, and biomechanical properties were quantified using μCT imaging, material testing system and histomorphometry. Aged osteoblasts and senescence markers were probed using immunofluorescence, flow cytometry for apoptotic maker annexin V, and RT-PCR. Significantly decreased bone mineral density, sparse trabecular morphometry (trabecular volume, thickness, and number), and poor biomechanical properties (maximum force and breaking force) along with low miR-29a expression occurred in aged WT mice. Aging significantly upregulated the expression of senescence markers p16INK4a, p21Waf/Cip1, and p53 in osteoporotic bone in WT mice. Of note, the severity of bone mass and biomechanical strength loss, as well as bone cell senescence, was remarkably compromised in aged miR-29aTg mice. In vitro, knocking down miR-29a accelerated senescent (β-galactosidase activity and senescence markers) and apoptotic reactions (capsas3 activation and TUNEL staining), but reduced mineralized matrix accumulation in osteoblasts. Forced miR-29a expression attenuated inflammatory cytokine-induced aging process and retained osteogenic differentiation capacity. Mechanistically, miR-29a dragged osteoblast senescence through targeting 3′-untranslated region of anti-aging regulator FoxO3 to upregulate that of expression as evident from luciferase activity assessment. Low miR-29a signaling speeds up aging-induced osteoblast dysfunction and osteoporosis development. Gain of miR-29a function interrupts osteoblast senescence and shields bone tissue from age-induced osteoporosis. The robust analysis sheds light to the protective actions of miR-29a to skeletal metabolism and conveys a perspective of miR-29a signaling enhancement beneficial for aged skeletons


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 24 - 24
1 Nov 2016
Thornhill T
Full Access

Aging of Population – Baby Boomers, Millennials, Generation X. Burden of TJR in USA – Estimated ∼ 4 million US adults currently live with TKR (4.2% of the population aged 50 or older) – Females (4.8%); Males (3.4%). Prevalence increased with increasing age. Estimated lifetime risk of primary TKR – 7.0% for males, 9.5% for females. Changes in Resident Education – Resident Work Hour Restrictions. Changes in Fellowship Education – Presumed shortage of fellowship trained arthroplasty surgeons, BWH Data. Changes in Healthcare Paradigm – Hospital – Margin/Mission, Efficiency, Contribution Margin, Ambulatory Centers. Academic/Community Practice – Revenue Driven, Diminished Education/Research Incentive. Arthroplasty Education – Time Restraints, Surgical Volume, Exposure to Options – CR/CS TKR, Revision TKR/THR, Femoral Cementing in THR. “Mind's EYE”. CME Training/Evidence-Based Medicine. Learn Basic Principles of Arthroplasty. “Be Neither the First nor Last to Embrace a New Technology”. “Always Act in the Best Interests of Your Patient”