Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 97 - 97
1 Dec 2020
French J Bramley P Scattergood S Sandiford N
Full Access

Objectives. Modular dual-mobility (MDM) constructs are used to reduce dislocation rates after total hip replacement (THR). They combine the advantages of dual mobility with the option of supplementary acetabular screw fixation in complex revision surgery. However, there are concerns about adverse reaction to metal debris (ARMD) as a result of fretting corrosion between the metal liner and shell. Methods: The aim of this systematic review was to find and review all relevant studies to establish the outcomes and risks associated with MDM hip replacement. All articles on MDM THRs in the Medline, EMBASE, CINAHL, Cochrane Library, and Prospero databases were searched. A total of 14 articles were included. A random intercept logistic regression model was used for meta-analysis, giving estimated average values. Results: There were 6 cases of ARMD out of 1312 total. Estimated median incidence of ARMD from meta-analysis was 0.3% (95% CI 0.1 – 1.4%). Mean postoperative serum Cobalt was 0.81 μg/L (95% CI 0.33 – 1.29 μg/L), and Chromium was 0.77 μg/L (95% 0.35 – 1.19 μg/L), from 279 cases in 7 studies. Estimated median incidence of a serum cobalt or chromium ion measurement ≥1 μg/L was 7.9% (95% CI 3.5 – 16.8%), and ≥7 μg/L was 1.8% (95% CI 0.7 – 4.2%). Conclusions: ARMD is a rare but significant complication following total hip replacement using a MDM construct. Its incidence appears higher than that reported in non-metal-on-metal (MoM) hip replacements but lower than that of MoM hip replacements. MDM hip replacements are associated with raised serum metal ion levels postoperatively, but there was no correlation with worse clinical hip function within studies. Studies were poor quality and at high risk of confounding. Pending further work, MDM constructs should be used with caution, reserved for select cases at particularly high risk of dislocation


Abstract. Objectives. Modular dual-mobility (MDM) constructs are used to reduce dislocation rates after total hip replacement (THR). They combine the advantages of dual mobility with the option of supplementary acetabular screw fixation in complex revision surgery. However, there are concerns about adverse reaction to metal debris (ARMD) as a result of fretting corrosion between the metal liner and shell. Methods. The aim of this systematic review was to find and review all relevant studies to establish the outcomes and risks associated with MDM hip replacement. All articles on MDM THRs in the Medline, EMBASE, CINAHL, Cochrane Library, and Prospero databases were searched. A total of 14 articles were included. A random intercept logistic regression model was used for meta-analysis, giving estimated mean values. Results. There were 6 cases of ARMD out of 1312 total. Estimated median incidence of ARMD from meta-analysis was 0.3% (95% CI 0.1 – 1.4%). Mean postoperative serum Cobalt was 0.81 μg/L (95% CI 0.33 – 1.29 μg/L), and Chromium was 0.77 μg/L (95% 0.35 – 1.19 μg/L), from 279 cases in 7 studies. Estimated median incidence of a serum cobalt or chromium ion measurement ≥1 μg/L was 7.9% (95% CI 3.5 – 16.8%), and ≥7 μg/L was 1.8% (95% CI 0.7 – 4.2%). Conclusions. ARMD is a rare but significant complication following total hip replacement using a MDM construct. Its incidence appears higher than that reported in non-metal-on-metal (MoM) hip replacements but lower than that of MoM hip replacements. MDM hip replacements are associated with raised serum metal ion levels postoperatively, but there was no correlation with worse clinical hip function within studies. Studies were poor quality and at high risk of confounding. Pending further work, MDM constructs should be used with caution, reserved for select cases at particularly high risk of dislocation. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 39 - 39
1 May 2017
Gee C Poole W Wilson D Gibbs J Stott P
Full Access

Adverse reaction to metal debris (ARMD) is well recognised as a complication of large head metal on metal total hip replacement (THR) leading to pain, bone and tissue loss and the need for revision surgery. An emerging problem of trunnionosis in metal on polyethylene total hip replacements leading to ARMD has been reported in a few cases. Increased metal ion levels have been reported in THR's with a titanium stem and a cobalt chrome head such as the Accolade-Trident THR (Stryker). We present 3 cases of ARMD with Accloade-Trident THR's with 36mm cobalt chrome head and a polyethylene liner. Metal ion levels were elevated in all three patients (cobalt 10.3 – 161nmol/l). Intraoperative tissue samples were negative for infection and inflammatory markers were normal. Abnormal fluid collections were seen in all three cases and bone loss was severe in one patient leading to a proximal femoral replacement. Histology demonstrated either a non-specific inflammatory reaction in a case which presented early or a granulomatous reaction in a more advanced case suggesting a local foreign body reaction. All patients had improved symptoms post-operatively. 1 patient who had staged bilateral Accolade-Trident THR's required revision of both THR's. ARMD in metal on polyethylene THR's with a titanium stem represents a potential emerging problem. Further studies are required to assess whether these occurrences are rare or represent the tip of an iceberg


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 28 - 28
1 Jan 2019
Mawdesley A Tyson-Capper A Kirby J Tipper JL
Full Access

Increased revision rates and early failure of Metal-on-Metal (MoM) hip replacements are often due to adverse reaction to metal debris (ARMD). Cobalt is a major component of MoM joints and can initiate an immune response via activation of the innate immune receptor Toll-like receptor 4 (TLR4). This leads to increased secretion of inflammatory cytokines/chemokines e.g. CCL3 and CCL4. The aim of this study was to evaluate whether TLR4-specific neutralising antibodies can prevent cobalt-mediated activation of TLR4. MonoMac 6 (MM6) cells, a human macrophage cell line, were treated with two different TLR4-specific monoclonal antibodies followed by 0.75mM of cobalt chloride (CoCl2). Lipopolysaccharide (LPS), a known TLR4 agonist was used as a positive control. Enzyme-linked immunosorbent assay (ELISA) was used to assess CCL3/CCL4 protein secretion and real time- polymerase chain reaction (RT-PCR) allowed quantification of CCL3/CCL4 gene expression. MM6 cells treated with cobalt and LPS up-regulate CCL3 and CCL4 gene expression and protein secretion. MM6 cells pre-treated with both monoclonal antibodies prior to stimulation with 0.75mM CoCl2 for 16 hours demonstrated significant inhibition of both CCL3 and CCL4 secretion as well as gene expression (both p=<0.0001). One of the antibodies failed to inhibit chemokine expression and secretion in LPS treated cells. This study identifies for the first time the use of TLR4-specific monoclonal antibodies to prevent cobalt activation of TLR4 and subsequent inflammatory response. This finding demonstrates the potential to exploit TLR4 inhibition in the context of MoM joint replacements by contributing to the development of novel therapeutics designed to reduce the incidence of ARMD


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 70 - 70
1 May 2017
Anjum S Mawdesley A Lawrence H Deehan D Kirby J Tyson-Capper A
Full Access

Background. Adverse reactions to metal debris are implicated in the failure of metal-on-metal hip arthroplasty. The peri-implant tissues are often infiltrated by leukocytes which may cause observed immunological effects, including soft tissue necrosis and osteolysis. Cobalt ions from orthopaedic implants aberrantly activate the innate immune receptor human toll-like receptor-4 (TLR4), leading to inflammatory cytokine release including interleukin-8 (IL-8). IL-8 has been shown to increase expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). These factors are essential for leukocyte adhesion to endothelium, which is required for leukocyte migration into tissues. This study investigates cobalt's effect on gene and protein changes in IL-8, ICAM-1 and VCAM-1 to determine their potential role in immune cell infiltration of peri-implant tissues. Methods. TLR4-expressing human dermal microvascular endothelial cells (HMEC-1) were treated with a range of clinically relevant cobalt ion concentrations. IL-8 protein secretion was measured by enzyme-linked immunosorbent assay (ELISA). Gene expression changes were quantified by TaqMan-based real time polymerase chain reaction. Results. Stimulation with cobalt ions significantly increases IL-8 secretion (n=3) in HMEC-1 cells. This is a TLR4-specific effect as a small molecule TLR4 antagonist inhibited cobalt-induced IL-8 secretion. Following cobalt treatment (0.75mM cobalt chloride) there is a 12-fold increase in ICAM-1 (p-value=0.0004) and a 6-fold increase in VCAM-1 (p-value<0.0001) gene expression. Work will be undertaken to determine the role of TLR4 in these responses. Conclusion. Cobalt increases IL-8 secretion and adhesion molecule gene expression in HMEC-1 cells. This in vitro finding demonstrates the potential for cobalt ions to increase leukocyte adhesion to the endothelial surface. This may contribute to leukocyte infiltration of peri-implant tissues in metal-on-metal hip arthroplasty failure


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 10 - 10
1 May 2017
Mawdesley A Anjum S Lawrence H Deehan D Kirby J Tyson-Capper A
Full Access

Background. Increased revision rates and early failure of Metal-on-Metal (MoM) hip replacements are often due to adverse reaction to metal debris (ARMD). ARMD describes numerous symptoms in patients such as pain, osteolysis and soft tissue damage. Cobalt is a major component of MoM joints and can initiate an immune response via activation of the innate immune receptor Toll-like receptor 4 (TLR4). This leads to increased secretion of inflammatory cytokines e.g. interleukin-8 (IL-8). This study investigates whether TLR4-specific antagonists inhibit the inflammatory response to cobalt using IL-8 gene expression and protein secretion as a marker of TLR4 activation. Methods. MonoMac 6 (MM6) cells, a human macrophage cell line, were treated with TLR4-specific antagonists followed by 0.75mM of cobalt chloride. Lipopolysaccharide (LPS), a known TLR4 agonist was used as a positive control. Enzyme-linked immunosorbent assay (ELISA) was used to assess IL-8 protein secretion and real time- polymerase chain reaction (RT-PCR) allowed quantification of IL-8 gene expression. Results. MM6 cells treated with cobalt and LPS up-regulate IL-8 gene expression and protein secretion (n=3). The addition of TLR4-specific antagonists significantly inhibits this up-regulation suggesting the observed effects are TLR4-mediated. MM6 cells stimulated with cobalt (0.75mM) for 16 hours demonstrated a 27-fold increase in IL-8 gene expression (p-value = < 0.0001). When pre-treated with 10μg/ml of a TLR4-specific antagonist fold increase decreased to 6-fold (p-value = < 0.0001). IL-8 secretion decreased from 5000pg/ml to 3000pg/ml (p-value = < 0.0001). Conclusion. TLR4-specific antagonists inhibit cobalt-mediated IL-8 gene expression and protein secretion in MM6 cells. This finding demonstrates the potential to exploit this inhibition in the context of MoM joint replacements by contributing to the development of novel therapeutics designed to improve MoM implant longevity, reduce the incidence of ARMD and prevent subsequent revision surgery


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 3 - 3
1 Aug 2012
Bolland B Culliford D Langton D Millington J Arden N Latham J
Full Access

This study reports the mid-term results of a large bearing hybrid metal on metal total hip replacement (MOMHTHR) in 199 hips (185 patients) with mean follow up of 62 months. Clinical, radiological outcome, metal ion levels and retrieval analysis were performed. Seventeen patients (8.6%) had undergone revision, and a further fourteen are awaiting surgery (defined in combination as failures). Twenty one (68%) failures were females. All revisions and ten (71%) of those awaiting revision were symptomatic. Twenty four failures (86%) showed progressive radiological changes. Fourteen revision cases showed evidence of adverse reactions to metal debris (ARMD). The failure cohort had significantly higher whole blood cobalt ion levels (p=0.001), but no significant difference in cup size (p=0.77), inclination (p=0.38) or cup version (p=0.12) in comparison to the non revised cohort. Female gender was associated with an increased risk of failure (chi squared p=0.04). Multifactorial analysis demonstrated isolated raised Co levels in the absence of either symptoms or XR changes was not predictive of failure (p=0.675). However both the presence of pain (p<0.001) and XR changes (p<0.001) in isolation were both significant predictors of failure. Wear analysis (n=5) demonstrated increased wear at the trunnion/head interface (mean out of roundness measurements of 34.5 microns +/−13.3 (+/−2SD, normal range 8-10 microns) with normal levels of wear at the articulating surfaces. There was evidence of corrosion at the proximal and distal stem surfaces. The cumulative survival rate, with revision for any reason was 92.4% (95%CI: 87.4-95.4) at 5 years. Including those awaiting surgery, the revision rate would be 15.1% with cumulative survival at 5 years of 89.6% (95% CI: 83.9-93.4). This MOMHTHR series has demonstrated unacceptable high failure rates with evidence of high wear at the head/trunnion interface and passive corrosion to the stem surface. This raises concern with the use of large heads on conventional 12/14 tapers. Female gender was an independent risk factor of failure. Metal ion levels remain a useful aspect of the investigation work up but in isolation are not predictive of failure


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 92 - 92
1 Aug 2012
Joyce T Langton D Lord J Nargol A
Full Access

Background. The worldwide withdrawal of the DePuy Articular Surface Replacement (ASR) device in both its resurfacing and total hip replacement (THR) form on 26 August 2010, after 93,000 were implanted worldwide, has had major implications. The 2010 National Joint Registry for England and Wales quoted figures of 12-13% failure at five years; however these figures may be an underestimate. Patients and methods. In 2004 a single surgeon prospective study of the ASR bearing surface was undertaken. Presented are the Adverse Reaction to Metal Debris (ARMD) failure rates of the ASR resurfacing and ASR THR systems. The diagnosis of ARMD was made by the senior author and was based on clinical history, examination, ultrasound findings, metal ion analysis of blood and joint fluid, operative findings and histopathological analysis of tissues retrieved at revision. Acetabular cup position in vivo was determined using EBRA software. Mean follow up was 52 months (24-81) and 70 patients were beyond 6 years of the procedure at the time of writing. Kaplan Meier survival analysis was carried out firstly with joints designated ‘failure’ if the patient had undergone revision surgery or if the patient had been listed for revision. A second survival analysis was carried out with a failure defined as a serum cobalt concentration > 7microgrammes/L (MHRA guideline from MDA-2010-069). Full explant analysis was carried out for retrieved prostheses. Results. There were 505 ASR hips in total (418 resurfacings and 87 THRs). 657 metal ion samples were available at the time of writing including 152 repeats. Survival analysis using revision/listed for revision as end point (at 6 years): ASR resurfacing: 26.1% failure; ASR THR: 55.5% failure. Survival using ion analysis (at 5 years): ASR resurfacing: 50.1% failure; ASR THR: 66.5% failure. The median (range) volumetric wear rate of failed prostheses was 8.23mm3/year (0.51-95.5). Failure and high ion concentrations are linked to acetabular cup size, anteversion and inclination. Increased failure rates in THRs were due to wear at the taper junction of head and stem. Conclusion. Design flaws in the ASR have led to excessive wear and consequently catastrophic failure rates secondary to ARMD


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 33 - 33
1 Aug 2012
Lord J Langton D Nargol A Joyce T
Full Access

Wear debris induced osteolysis is a recognized complication in conventional metal-on-polyethylene hip arthroplasty. One method of achieving wear reduction is through the use of metal-on-metal articulations. One of the latest manifestations of this biomaterial combination is in designs of hip resurfacing which are aimed at younger, more active patients. But, do these metal-on-metal hip resurfacings show low wear when implanted into patients?. Using a Mitutoyo Legex 322 co-ordinate measuring machine (scanning accuracy less than 1 micron) and a bespoke computer program, volumetric wear measurements for retrieved Articular Surface Replacements (ASR, DePuy) metal-on-metal hip resurfacings were undertaken. Measurements were validated against gravimetric calculations for volumetric wear using a sample femoral head that was artificially worn in vitro. At 5mm3, 10mm3, and 15mm3 of material removal, the method was shown to be accurate to within 0.5mm3. Thirty-two femoral heads and twenty-two acetabular cups were measured. Acetabular cups exhibited mean volumetric wear of 29.00mm3 (range 1.35 - 109.72mm3) and a wear rate of 11.02mm3/year (range 0.30 - 63.59mm3/year). Femoral heads exhibited mean wear of 22.41mm3 (range 0.72 - 134.22mm3) and a wear rate of 8.72mm3/year (range 0.21 - 31.91mm3/year). In the 22 cases where both head and cup from the same prosthesis were available, mean total wear rates of 21.66mm3/year (range 0.51 - 95.50mm3/year) were observed. Revision was necessitated by one of five effects; early femoral neck fracture (4 heads), avascular necrosis (AVN) (2 heads, 1 cup), infection (1 head, 1 cup), adverse reaction to metal debris (ARMD) (19 heads, 18 cups) or ARMD fracture (6 heads, 2 cups). Mean paired wear rates for the AVN and infection retrievals were 0.51mm3/year and 3.98mm3/year respectively. In vitro tests typically offer wear rates for metal-on-metal devices in the region of 2-4mm3. Mean paired wear rates for ARMD and ARMD fracture were 17.64mm3/year and 68.5mm3/year respectively, significantly greater than those expected from in vitro tests. In the 4 cases of early fracture, only the heads were revised so a combined wear rate calculation was not possible. The heads exhibited mean wear rate of 8.26mm3/year. These high wear rates are of concern


Bone & Joint Research
Vol. 9, Issue 3 | Pages 146 - 151
1 Mar 2020
Waldstein W Koller U Springer B Kolbitsch P Brodner W Windhager R Lass R

Aims

Second-generation metal-on-metal (MoM) articulations in total hip arthroplasty (THA) were introduced in order to reduce wear-related complications. The current study reports on the serum cobalt levels and the clinical outcome at a minimum of 20 years following THA with a MoM (Metasul) or a ceramic-on-polyethylene (CoP) bearing.

Methods

The present study provides an update of a previously published prospective randomized controlled study, evaluating the serum cobalt levels of a consecutive cohort of 100 patients following THA with a MoM or a CoP articulation. A total of 31 patients were available for clinical and radiological follow-up examination. After exclusion of 11 patients because of other cobalt-containing implants, 20 patients (MoM (n = 11); CoP (n = 9)) with a mean age of 69 years (42 to 97) were analyzed. Serum cobalt levels were compared to serum cobalt levels five years out of surgery.