Advertisement for orthosearch.org.uk
Results 1 - 12 of 12
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 52 - 52
17 Apr 2023
Abram S Sabah S Alvand A Price A
Full Access

Revision knee arthroplasty is a complex procedure with the number and cost of knee revision procedures performed per year expected to rise. Few studies have examined adverse events following revision arthroplasty. The objective of this study was to determine rates of serious adverse events in patients undergoing revision knee arthroplasty with consideration of the indication for revision (urgent versus elective indications) and to compare these with primary arthroplasty and re-revision arthroplasty. Patients undergoing primary knee arthroplasty were identified in the UK Hospital Episode Statistics. Subsequent revision and re-revision arthroplasty procedures in the same patients and same knee were identified. The primary outcome was 90-day mortality and a logistic regression model was used to investigate factors associated with 90-day mortality and secondary adverse outcomes including infection (undergoing surgery), pulmonary embolism, myocardial infarction, stroke. Urgent indications for revision arthroplasty were defined as infection or fracture, and all other indications were included in the elective indications cohort. 939,021 primary knee arthroplasty cases were included of which 40,854 underwent subsequent revision arthroplasty, and 9,100 underwent re-revision arthroplasty. Revision surgery for elective indications was associated with a 90-day rate of mortality of 0.44% (135/30,826; 95% CI 0.37-0.52) which was comparable to primary knee arthroplasty (0.46%; 4,292/939,021; 95% CI 0.44-0.47). Revision arthroplasty for infection, however, was associated with a much higher mortality of 2.04% (184/9037; 95% CI 1.75-2.35; odds ratio [OR] 3.54; 95% CI 2.81-4.46), as was revision for periprosthetic fracture at 5.25% (52/991; 95% CI 3.94-6.82; OR 6.23; 95% CI 4.39-8.85). Higher rates of pulmonary embolism, myocardial infarction, and stroke were also observed in the infection and fracture cohort. These findings highlight the burden of complications associated with revision knee arthroplasty. They will inform shared decision-making for patients considering revision knee arthroplasty for elective indications. Patients presenting with infection of a knee arthroplasty or a periprosthetic fracture are at very high risk of adverse events. It is important that acute hospital services and tertiary referral centres caring for these patients are appropriately supported to ensure appropriate urgency and an anticipation for increased care requirements


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 48 - 48
1 Mar 2021
AlSaleh K Aldawsari K Alsultan O Awwad W Alrehaili O
Full Access

Posterior spinal surgery is associated with a significant amount of blood loss. The factors predisposing the patient to excessive bleeding-and therefore transfusion- are not well established nor is the effect of transfusion on the outcomes following spinal surgery. We had two goals in this study. First, we were to investigate any suspected risk factors of transfusion in posterior thoraco-lumbar fusion patients. Second, we wanted to observe the negative impact-if one existed- of transfusion on the outcomes of surgery. All adults undergoing posterior thoraco-lumbar spine fusion in our institution from May 2015 to May 2018 were included. Data collected included demographic data as well as BMI, preoperative hemoglobin, American Society of Anesthesiologists classification (ASA), delta Hemoglobin, estimated blood loss, incidence of transfusion, number of units transfused, number of levels fused, length of stay and re-admission within 30 days. The data was analyzed to correlate these variables with the frequency of transfusion and then to assess the association of adverse outcomes with transfusion. 125 patients were included in the study. Only 6 patients (4.8%) required re-admission within the first 30 days after discharge. Length of stay averaged 8.4 days (3–74). 18 patients (14.4%) required transfusion peri-operatively. When multiple variables were analyzed for any correlation, the number of levels fused, age and BMI had statistically significant correlation with the need for transfusion (P <0.005). Patients undergoing posterior thoraco-lumbar fusion are more likely to require blood transfusion if they were older, over-weight & obese or had a multi-level fusion. Receiving blood transfusion is associated with increased complication rates


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 84 - 84
1 Mar 2021
Mobasheri A
Full Access

Sarcopenia is a progressive and generalized skeletal muscle disorder that involves loss of muscle mass and function. It is associated with increased adverse outcomes including falls, functional decline, frailty and mortality and affects 65% of people over the age of 65 more than half of people aged 80 and above. The factors that cause and worsen sarcopenia are categorised into two groups. The primary aetiological factor is ageing and the secondary factors include disease, physical inactivity, and poor nutrition. Sarcopenia is considered to be ‘primary' (or age-related) when no other specific cause is evident. However, a number of ‘secondary' factors may be present in addition to ageing. Sarcopenia can occur secondary to a systemic or inflammatory disease, including malignancy and organ failure. Physical inactivity is one of the major contributors to the development of sarcopenia, whether due to a sedentary lifestyle or to disease related immobility or disability. Furthermore, sarcopenia can develop as a result of inadequate protein consumption. Biomarkers are objective and quantifiable characteristics of physiological and pathophysiological processes. Biomarkers can be used to predict the development of sarcopenia in older susceptible adults and enable early interventions that can reduce the risk of physical disability, the co-morbidities associated with the loss of muscle mass and the poor health outcomes that result from sarcopenia. Non-invasive imaging technologies can be used as biomarkers to detect loss of skeletal muscle mass in sarcopenia include bone densitometry, computed tomography, ultrasound and magnetic resonance imaging. However, imaging requires sophisticated and expensive equipment that is not available in a resource poor setting. Therefore, markers of skeletal muscle strength and fitness and soluble biochemical markers in blood may be used as alternative biomarkers. Studies on sarcopenia have identified numerous soluble biochemical biomarkers. These biomarkers can be divided into two groups: “muscle-specific” and “non-muscle-specific” biomarkers. Since sarcopenia is associated with rapid skeletal muscle wasting, the skeletal muscle-specific isoform of troponin T may be considerate a useful biomarker of sarcopenia, since high troponin levels in blood are an expression of muscle wasting. Peptides derived from collagen type VI turnover may be potential biomarkers of sarcopenia. We have recently conducted a systematic review to summarize the data from recent mass-spectrometry based proteomic studies of the secretome of skeletal muscle cells in response to disease, exercise or metabolic stress in order to identify the proteins involved in muscle breakdown. Developing robust in vitro models for the study of sarcopenia using primary muscle cells is a high priority as is exploiting the in vitro models to understand catabolic and inflammatory processes and molecular mechanisms involved in sarcopenia. Co-cultures with adipose-derived and other cells may be used to screen for small molecules and biologicals capable of inhibiting the catabolic and inflammatory pathways involved in sarcopenia. This presentation reviews recent progress in this area and outlines opportunities for future research on sarcopenia


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 1 - 1
1 Apr 2017
Walkden G Lewis S Soar J
Full Access

Background. The National Confidential Enquiry into Perioperative Deaths recommends that high-dependency (HDU) or intensive care unit (ICU) care is available following arthroplasty. In hospitals without dedicated post-operative care units, patients can be transferred to wards more rapidly, which is associated with adverse surgical outcome, increased morbidity & mortality and unplanned HDU/ICU admission. Pre-operative assessment clinics (POAC) have been demonstrated to reduce these adverse outcomes. We present an evaluation of HDU/ICU admissions and a micro-cost effectiveness evaluation of POAC and planned HDU/ICU admission in hip/knee arthroplasty. Methods. Data were obtained retrospectively for all patients undergoing hip/knee arthroplasty between 01/06/2013–30/06/2014 at North Bristol NHS Trust. n=2258 admissions were linked across coding, ICU (WardWatcher), and Myocardial Ischaemia National Audit Project databases. POAC records and patient notes were hand-searched for n=83 admissions to HDU/ICU. Cost estimates were derived from clinical coding and length-of-stay. The work was performed in STATA and registered under Trust ID 15545. Results. Over eleven months, n=1917 elective arthoplasties were performed, with zero in-hospital deaths and n=68 transferred to HDU/ICU post-operatively. Unplanned HDU/ICU admissions (n=23; 33.8%) were outnumbered by planned admissions (n=38; 55.9%). Hospital length-of-stay was significantly longer (p<0.01) following unplanned HDU/ICU admission, 19.0±22.0 days, compared with planned HDU/ICU admission, 7.5±8.0 days. No significant difference was detected in the proportion of unplanned or planned HDU/ICU admissions that attended anaesthetist POAC (60.9 vs. 68.4%, p=0.59). The total cost of elective arthroplasty with an unplanned (£12200) or planned HDU/ICU admission (£7600) differed by £4500. Conclusions. Our in-hospital mortality compares favourably with published estimates. Unplanned HDU/ICU admission was associated with an increased cost of £4500 per arthroplasty, largely due to increased hospital length-of-stay. 39.1% of patients who required unplanned admission to HDU/ICU were not invited to POAC, which may represent a missed opportunity for reducing post-arthroplasty morbidity and costs. Level of evidence. 2c


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 106 - 106
1 Nov 2018
Hardy B Armitage M Khair D Nandan N Pettifor E Lake D Lingham A Relwani A
Full Access

The World Health Organisation (WHO) Surgical Safety checklist is an evidence-based tool shown to reduce surgery-related morbidity and mortality. Despite audits showing 96% checklist compliance, our hospital had 3 surgical never events in 10 months, 2 of which were in orthopaedics. By March 2018, the authors aimed to achieve 100% compliance with all 5 sections of the WHO Five Steps to Safer Surgery bundle for all surgical patients. Additionally, the authors aimed to assess the impact of the quality of bundle delivery on preventable errors related to human factors. Quantitative assessment involved direct observations of compliance in theatres. Qualitative data in the form of rich, descriptive observations of events and discussions held during checklist delivery was analysed thematically. Interventions included trust-wide policy changes, awareness sessions, introduction of briefing and debrief proformas and documented prosthesis checks. For elective surgeries, checklist compliance increased to 100% in 4 of 5 sections of the bundle. The incidence of reported preventable critical incidents decreased from 6.7% to 2.4%. A chi-squared test of independence demonstrated a significant relationship between the implementation of changes and completion of the checklist, X2 (1, N = 1019) = 25.69, p < 0.0001. Thematic analysis identified leadership, accountability, engagement, empowerment, communication, and teamwork as factors promoting effective checklist use. Our findings highlight the benefits of a qualitative approach to auditing checklists. Exploring the role of human factors and promoting staff awareness and engagement improves checklist compliance and enhances its effectiveness in reducing surgery-related adverse outcomes


Bone & Joint 360
Vol. 12, Issue 5 | Pages 49 - 50
1 Oct 2023
Marson BA

This edition of Cochrane Corner looks at some of the work published by the Cochrane Collaboration, covering pharmacological interventions for the prevention of bleeding in people undergoing definitive fixation or joint replacement for hip, pelvic, and long bone fractures; interventions for reducing red blood cell transfusion in adults undergoing hip fracture surgery: an overview of systematic reviews; and pharmacological treatments for low back pain in adults: an overview of Cochrane Reviews


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 36 - 36
1 Mar 2021
Oluku J Hope N El-Raheb K
Full Access

Hip fractures are a common injury in elderly patients. The UK has a National Hip Fracture Database to collect data on all patients presenting to hospital with a hip fracture. Literature evidence suggests that early surgery for hip fracture patients improves morbidity and mortality. UK national guidelines (BOA, NICE) recommend that surgery is performed within 36 hours of presentation and/or diagnosis for inpatients. Best Practice Tariffs ensure that hospitals are paid a set value if they meet this target of surgery within 36 hours. This study aims to look at reasons for delay to surgery for patients presenting to our busy level 2 trauma unit. This is a retrospective review of prospectively collected data for patients referred to the orthopaedic team at our hospital with a diagnosis of a neck of femur fracture between 1st April and 31st December 2018. Patients under the age of 65 year of age were excluded from our study. Only patients who were operated on after 36 hours were included. The database for reasons of surgical delay was reviewed and electronic patient records were used to collect further data on length of stay and 30-day mortality. A total of 249 patients were diagnosed with a hip fracture during the study period. 2 patients were too unwell for an operation and died within 24 hours of diagnosis/admission. 46 patients were included in the study. The primary reasons for surgical delay were patients not being fit for surgery (14/46) and the use of anti-coagulation (14/46). Other reasons included a lack of surgical capacity (7/46) and delayed diagnosis due to further imaging (CT). Mean delay to surgery was 51.8 hours (range 34.5 – 157.2 hours; median 42.9 hours), mean length of stay 20.4 days (range 5.3 – 55.7 days, median 15.6 days). 30-day mortality was 4/46 (8.6%) for patients who were delayed. Many of the issues we found in this study are unusual however these problems are commonly faced in many level 2 trauma units that serve an ever growing ageing population. Changing practice to provide improved out-of-hours medical care to facilitate medical optimisation and using current literature evidence that shows that the use of DOACs/NOACs does not adversely affect outcomes when patients are operated on within 24 hours of the last dose may help improve times to surgery


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_30 | Pages 32 - 32
1 Aug 2013
Hopper G Deakin A Crane E Clarke J
Full Access

In recent years there has been growing interest in enhanced recovery regimes in lower limb arthroplasty due to potential clinical benefits of early mobilisation along with cost-savings. Following adoption of this regime in a district general hospital, it was observed that traditional dressings were a potential barrier to its success with ongoing wound problems in patients otherwise fit for discharge. The aim of this audit was to assess current wound care practice, implement a potentially improved regime and re-evaluate practice. A prospective clinical audit was performed over a three month period involving 100 patients undergoing hip or knee arthroplasty. Fifty patients with traditional dressings were evaluated prior to change in practice to a modern dressing (Aquacel™ Surgical). Fifty patients were then evaluated with the new dressing to complete the audit cycle. Clinical outcome measures included wear time, number of changes, blister rate and length of stay. Statistical comparisons were performed using Mann Whitney or Fisher's Exact test (statistical significance, p<0.05). Wear time for the traditional dressing (2 days) was significantly shorter than the modern dressing (7 days), p<0.001, and required more changes (0 vs. 3 days), p<0.001. 20% of patients developed blisters with the traditional dressing compared with 4% with the modern dressing (p=0.028). Length of stay was the same for the modern dressing (4 days) compared with the traditional dressing (4 days). However, in the modern group 75% of patients were discharged by day 4 whereas in the traditional group this took until day 6. This audit highlights the problems associated with traditional dressings with frequent early dressing changes, blistering and delayed discharge. These adverse outcomes can be minimised with a modern dressing specifically designed for the demands of lower limb arthroplasty. Units planning to implement enhanced recovery regimes should consider adopting this dressing to avoid compromising patient discharge


Bone & Joint 360
Vol. 6, Issue 6 | Pages 41 - 43
1 Dec 2017
Foy MA


Bone & Joint 360
Vol. 6, Issue 5 | Pages 39 - 40
1 Oct 2017
Das A


Bone & Joint Research
Vol. 6, Issue 5 | Pages 259 - 269
1 May 2017
McKirdy A Imbuldeniya AM

Objectives

To assess the clinical and cost-effectiveness of a virtual fracture clinic (VFC) model, and supplement the literature regarding this service as recommended by The National Institute for Health and Care Excellence (NICE) and the British Orthopaedic Association (BOA).

Methods

This was a retrospective study including all patients (17 116) referred to fracture clinics in a London District General Hospital from May 2013 to April 2016, using hospital-level data. We used interrupted time series analysis with segmented regression, and direct before-and-after comparison, to study the impact of VFCs introduced in December 2014 on six clinical parameters and on local Clinical Commissioning Group (CCG) spend. Student’s t-tests were used for direct comparison, whilst segmented regression was employed for projection analysis.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 11 | Pages 1522 - 1527
1 Nov 2008
Davis ET Olsen M Zdero R Waddell JP Schemitsch EH

A total of 20 pairs of fresh-frozen cadaver femurs were assigned to four alignment groups consisting of relative varus (10° and 20°) and relative valgus (10° and 20°), 75 composite femurs of two neck geometries were also used. In both the cadaver and the composite femurs, placing the component in 20° of valgus resulted in a significant increase in load to failure. Placing the component in 10° of valgus had no appreciable effect on increasing the load to failure except in the composite femurs with varus native femoral necks. Specimens in 10° of varus were significantly weaker than the neutrally-aligned specimens.

The results suggest that retention of the intact proximal femoral strength occurs at an implant angulation of ≥ 142°. However, the benefit of extreme valgus alignment may be outweighed in clinical practice by the risk of superior femoral neck notching, which was avoided in this study.