INTRODUCTION. The elimination of motion and disc stress produced by spinal fusion may have potential consequences beyond the index level overloading the spinal motion segments and leading to the appearance of degenerative changes. So the “topping-off” technique is a new concept instructing dynamic fixation such as interspinous process device (IPD) for the purpose of avoiding
Anterior cervical discectomy and fusion for radiculopathy and myelopathy has the complication of the development of
Neck pain can be caused by pressure on the spinal cord or nerve roots from bone or disc impingement. This can be treated by surgically decompressing the cervical spine, which involves excising the bone or disc that is impinging on the nerves or widening the spinal canal or neural foramen. Conventional practise is to fuse the adjacent intervertebral joint after surgery to prevent intervertebral motion and subsequent recompression of the spinal cord or nerve root. However fusion procedures cause physiological stress transfer to
Proximal junctional kyphosis (PJK) is defined as
Cervical spinal arthrodesis is the standard of care for the treatment of spinal diseases induced neck pain. However,
Intervertebral disc (IVD) degeneration plays a major role in low back pain which is the leading cause of disability. Current treatments in severe cases require surgical intervention often leading to
INTRODUCTION. Lumbar total disc replacement (TDR) is an alternative treatment to avoid fusion related adverse events, specifically
Cervical total disc replacement has been in practice for years now as a viable alternative to cervical fusion in suitable cases, aspiring to preserve spinal motion and prevent
PEEK rods construct has been proposed to allow better load sharing among spinal components when compared to the more traditional Titanium rods constructs. However, such proposal has largely derived from single-load in-vitro testing and the biomechanical differences between the two constructs when subjected to fatigue loading remain unknown. Current study comparatively analyzed the in-vitro biomechanical performance of PEEK and Titanium rod constructs as spinal implants through a 5 hour fatigue loading test. The disc height and intradiscal pressure of the instrumented and adjacent levels pre- and post-loading were recorded for analysis. The stress levels on the rods and bone stress near the screw-bone interface were also collected to investigate the likely failure rates of the two constructs. The results showed that the Titanium rods construct demonstrated a minimum amount of loss of disc height and intradiscal pressure at the instrumented level, however, a significant loss of the disc height and intradiscal pressure at adjacent levels compared to the intact spine were identified. In contrast, the disc height and intradiscal pressure of the PEEK rods were found to be comparable to those of the intact spine for all levels. The PEEK rods group also showed significantly less bone stress near the screw-bone interface compared to the Titanium rods group. Current study has demonstrated the potential benefits of the PEEK rods construct in reducing the risks of
Introduction. Recently ventral plating implants made of carbon/PEEK composite material have been developed with apparently superior material properties in terms of implant fatigue and imaging suitability. In this study we assessed the outcome of the first clinical application of this new implant. Methods. Retrospective, single-center case series of 16 consecutive patients between 2011 and 2013 undergoing ventral stabilization surgery with a new carbon plating system (see figure 1). We collected data in terms of safety of the procedure (screw positioning, blood loss, operation time), quality and reliability of the implant (revisions, dislocations, screw loosening, fusion,
INTRODUCTION. Several clinical studies demonstrated long-term adjacent-level effects after implantation of spinal fusion devices[1]. These effects have been reported as adjacent joint degeneration and the development of new symptoms correlating with
The emerging of non-fusion surgery is aimed to solve the long-term complication of fusion surgery that may bring the adjacent disc degeneration. Among several kinds of artificial discs developed in these years, the majority in the market is Prodisc-L (Synthes Inc.) which is designed with the purpose to restore the motions including anteroposterior translation, lateral bending, and axial rotation. These is also one artificial disc called Physio-L (Nexgen Spine) which were hyper-elastic material (Polycarbonate Polyurethanes) and is designed to restore the motions maintioned above plus axial loading. The concept of using hyper-elastic material as disc is to mimic the material properties of intervetebral discs so that this disc both absorb the axial loading and also restore the physiological range of motion. Few studies focused on the biomechanical behavior of hyper-elastic artificial discs have yet been reported. Therefore, the purpose of this study is to compare the biomechanical behavior between Prodisc-L and Physio-L. A validated three-dimensional finite element model of the L1-L5 lumbar intact spine was used in this study with ANSYS software [Fig.1]. Total disc replacement surgery, partial discectomy, total nuclectomy and removal of the anterior longitudinal ligament were performed at the L3/L4 segment of this intact model, and the Prodisc-L and Physio-L was implanted into L3/L4 segment, respectively. In addition, hyper-elastic materials adopted by Physio-L are usually categorized by their hardness into soft and hard [Fig.2]. Therefore, two kinds of Physio-L were studied. A 400 N follower load and a 10 N-m moment were applied to the intact model to obtain four physiological motions as comparison baseline. The implanted models were subjected to 400 N follower load and specific moments in accordance with the hybrid test method. For the Prodisc-L model in the surgical segment, the range of motion (ROM) varied by -26%, +17%, -0.01%, and -0.04% in flexion, extension, lateral bending, and axial rotation, respectively, as compared to intact model [Fig.3]. For the Physio-L (soft) model, ROM varied by +10%, +8%, +3%, and +19% in four physiological motions, respectively. For the physio-L (hard) model, ROM varied by +1%, +8%, +1%, and +11% in four physiological motions, respectively. For the Prodisc-L model in the
Introduction. The majority of spine patients present with discogenic low back pain, originating from either degenerative disc disease (DDD) or internal disc disruption (IDD). Successful treatment of this patient population relies on obtaining precision diagnosis and careful patient selection, as well as matching the pathology with reliable technology. Total disc replacement (TDR), as an alternative to spinal fusion in the treatment of DDD or IDD, has been studied and reported for several decades in long-term follow-up studies and in several randomized control trials. This prospective study presents a single surgeon experience with two-level CHARITÉ® TDR in 84 consecutive patients, with minimum follow-up of 5 years. The aims of the study were to assess the clinical outcomes of two-level TDR in patients with DDD/IDD. Based on the literature review conducted, this study is considered the largest single surgeon series experience with the two-level CHARITÉ® TDR in the treatment of lumbar DDD, with a minimum follow-up of 5 years reported to date. Materials and Methods. Between January 1997 and March 2006, n=84 consecutive patients underwent two-level TDR for the treatment of two-level DDD or IDD discogenic axial low back pain with or without radicular pain. All patients completed self-assessment outcome questionnaires pre and postoperatively (3, 6, 12 months, and yearly thereafter), including Oswestry Disability Index (ODI), Roland-Morris Disability Questionnaire (RMDQ) and Visual Analogue Score (VAS) for back and leg pain. Results. For the n=84 patients, the mean follow-up was 94.34±2.19 months (range = 62–150). The mean age was 49.6±0.94. The mean surgical time was 91±3.16 minutes and the mean blood loss was 207.5±30.62 mls. The main diagnosis was two-level DDD in 63 (76.8%) patients, followed by one-level disc herniation and one-level DDD. Seventy-three (89%) patients underwent L4-5 L5-S1 TDR and 9 (11%) patients underwent L3-4 L4-5 TDR. At all follow-up points, patients demonstrated significant improvement in ODI, RMDQ, and VAS back and leg pain scores compared to pre-operative scores (p < 0.001). The mean improvement between pre-op and last follow-up was 33.3 (66.8%) and 13.23 (74%) for ODI and RMDQ, respectively. Similarly, that was 54.8 (69 %%) and 34.8 (65%) for VAS back and VAS leg pain, respectively. At least 87.8% of the patients rated their satisfaction as good/excellent at any follow-up point. At 5 years follow-up, 54 patients (65.9%) rated their satisfaction as excellent, 19 (23.2%) as good, 7 (8.5%) as satisfactory and 2 (2.4%) as poor. Two patients (2 out of 84, 2.38%) required early revision of one of the prostheses due to failure of indication and/or failure of technique. There has been no device failure. One patient required surgery for
INTRODUCTION:. As a consequence from cervical arthroplasty, spine structural stiffness, loading and kinematics are changed, resulting in issues like
Introduction. Anterior cervical decompression and fusion (ACDF) is considered a standard surgical treatment to degenerative discogenic diseases. Lately, the question arises whether or not ACDF significantly influences the progression of adjacent disc degeneration (ADD). The etiology of ADD is obscure and it has not been fully understood whether ADD is a consequence of fusion or it represents the aging pathway of the degenerative cervical process, thus making it a controversial topic [1-3]. There have been several discussions about the possibility of ACDF altering biomechanical conditions at