Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 58 - 58
1 Dec 2016
Hassan E Tucker A Clouthier A Deluzio K Brandon S Rainbow M
Full Access

Valgus knee unloader braces are often prescribed as treatment for knee osteoarthritis (OA). These braces are designed to redistribute the loading in the knee, thereby reducing medial contact forces. Patient response to bracing is variable; some patients experience improvements in joint loading, pain, and function, others see little to no effect. We hypothesised that patients who experienced beneficial response to the brace, measured by reductions in medial contact force, could be predicted based on static and dynamic measures. Participants completed a WOMAC questionnaire and walked overground with and without an OA Assist knee brace in a motion capture lab. Eighteen patients with medial compartment OA (8 female, 53.8±7.0 years, BMI 30.3±4.1, median Kellgren-Lawrence grade 4 (range 1–4)) were evaluated. The abduction moment applied by the brace was estimated by multiplying brace deflection by the pre-determined brace stiffness. A generic musculoskeletal model was scaled for each participant based on standing full length radiographs and anatomical markers. Inverse kinematics, inverse dynamics, residual reduction, and muscle analysis were completed in OpenSim 3.2. A static optimisation was then performed to estimate muscle forces and then tibiofemoral contact forces were calculated. Brace effectiveness was defined by the difference in the first peak of the medial contact force between braced and unbraced conditions. Principal component analysis was performed on the hip, knee, and ankle angles and moments from the unbraced walking condition to extract the principal component (PC) scores for these variables. A linear regression procedure was used to determine which variables related to brace effectiveness. Potential regressors included: hip-knee-ankle angle and medial joint space measured radiographically; KL grade; mass; WOMAC scores; unbraced walking speed; and the first two principal component scores for each of the unbraced hip, knee, and ankle joint angles and moments. KL grade, walking speed, and hip adduction moment PC1, which represented the magnitude of the first peak were all found to be correlated with change in medial contact force. The brace was more successful in reducing medial contact force in subjects with higher KL grades, faster self-selected walking speeds, and larger peak external hip adduction moments. The R2 value for the overall regression model was 0.78. The best predictor of brace effectiveness was the hip adduction moment, indicating the need to consider dynamic measures. Participants who had hip adduction moments and walking speeds similar to those of their healthy counterparts saw a greater reduction in medial contact force. Thus, those who responded to bracing had more severe OA as measured by the KL grade but had not experienced changes in their hip adduction moment due to OA. The results of this study suggest that there is potential for an objective criterion for valgus knee brace use to be established


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 114 - 114
1 Mar 2017
Riviere C Girerd D Ollivier M Argenson J Parratte S
Full Access

Background. A principle of Total Knee Arthroplasty (TKA) is to achieve a neutral standing coronal alignment of the limb (Hip Knee Ankle (HKA) angle) to reduce risks of implant loosening, reduce polyethylene wear, and optimise patella tracking. Several long-term studies have questioned this because the relationship between alignment and implant survivorship is weaker than previously reported. We hypothesize standing HKA poorly predicts implant failure because it does not predict dynamic HKA, dynamic adduction moment, and loading of the knee during gait. Therefore, the aim of our study is to assess the relationship between the standing (or static) and the dynamic (gait activity) HKAs. Methods. We performed a prospective study on a cohort of 35 patients (35 knees) who were treated with a posterior-stabilized TKA for primary osteoarthritis between November 2012 and January 2013. Three months after surgery each patient had standardized digital full-leg coronal radiographs and was classified as neutrally aligned TKA (17 patients), varus aligned (9 patients), and valgus aligned (4 patients) (figure 1). Patients then performed a gait analysis for level walking and dynamic HKA and adduction moment during the stance phase of gait were measured. Results. We found standing HKA having a moderate correlation with the peak dynamic varus (r=0.318, p=0.001) and the mean and peak adduction moments (r=0.31 and r=−0.352 respectively). In contrast we did not find a significant correlation between standing HKA and the mean dynamic coronal alignment (r=0.14, p=0.449) (figure 2 and 3). No significant differences were found for dynamic frontal parameters (dynamic HKA and adduction moment) between patients defined as neutrally aligned or varus aligned. Conclusion. In our practice, the standing HKA after TKA was of little value to predict dynamic behaviour of the limb during gait. These results may explain why standing coronal alignment after TKA may have limited influence on long term implant fixation and wear


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 57 - 57
1 Mar 2017
Noble P Gold J Patel R Lenherr C Jones H Ismaily S Alexander J
Full Access

INTRODUCTION. Cementless tibial trays commonly fail through failure of fixation due to excessive interface motion. However, the specific combination of axial and shear forces precipitating implant failure is unknown. This has led to generic loading profiles approximating walking to perform pre-clinical assessment of new designs, even though telemetric data demonstrates that much larger forces and moments are generated during other functional activities. This study was undertaken to test the hypotheses: (i) interface motion of cementless tibial trays varies as a function of specific activities, and (ii) the response of the cementless tibial interface to walking loading is not representative of other functional activities. MATERIALS and METHODS. Six fresh-frozen cadaveric tibias were tested using a custom designed functional activity simulator after implantation of a posterior stabilized total knee replacement (NexGen LPS, Zimmer, Warsaw IN). Activity scenarios were selected using force (Fx, Fy, Fz) and moment (Mx, My, Mz) data from patients with instrumented tibial trays (E-tibia) published by Bergmann et al. A pattern of black and white spray paint was applied to the surface of the specimen including the tibial tray and bone. Each specimen was preconditioned through application of a vertical load of 1050N for 500 cycles of flexion-extension from 5–100°. Following preconditioning, each tibia was loaded using e-tibia values of forces and moments for walking, stair-descent, and sit-to-stand activities. The differential motion of the tibial tray and the adjacent bony surface was monitored using digital image correlation (DIC) (resolution: 1–2 microns in plane; 3–4 microns out-of-plane). Four pairs of stereo-images of the tray and tibial bone were prepared at sites around the circumference of the construct in both the loaded and unloaded conditions: (i) before and after pre-conditioning and (ii) before and after the 6 functional loading profiles. The images were processed to provide circumferential measurements of interface motion during loading. Differences in micromotion and migration were evaluated statistically using step-wise multivariate regression. RESULTS. The average 3D motion of the tibial tray varied extensively with the loading conditions corresponding to the different activities (Figs 1,2). The largest 3D motion was seen during the first peak of stair descent (86.6±8.0µm) and the first peak of walking (83.1±10.2µm; p=0.5516), both of which were characterized by large adduction moments (18.5 and 19.1Nm respectively). The differences between 3D micromotion of all other pairs of activities were statistically significant (p<0.0001 to p=0.0127). Each of the 6 loading scenarios simulated elicited a different combination of components of implant displacement at the cementless interface. The largest differences in interface motion were observed between the first peak of walking and all of the other loading modes with reversal of the direction of the SI (p=0.3828), AP (p<0.0001) and ML (p<0.0001) components of tray displacement (Figs. 2,3). CONCLUSIONS. 1. Magnitude and direction of interface motion between the tibia and a cementless tibial tray vary with specific loading patterns. 2. Interface motion observed during loading conditions representative of walking are not indicative of the stability of cementless implant fixation when exposed to loading conditions generated by other activities. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 100 - 100
1 Mar 2017
Wimmer M Simon J Kawecki R Della Valle C
Full Access

Introduction. Preservation of the anterior cruciate ligament (ACL), along with the posterior cruciate ligament, is believed to improve functional outcomes in total knee replacement (TKR). The purpose of this study was to examine gait differences and muscle activation levels between ACL sacrificing (ACL-S) and bicruciate retaining (BCR) TKR subjects during level walking, downhill walking, and stair climbing. Methods. Ten ACL-S (Vanguard CR) (69±8 yrs, 28.7±4.7 kg/m2) and eleven BCR (Vanguard XP, Zimmer-Biomet) (63±11 yrs, 31.0±7.6 kg/m2) subjects participated in this IRB approved study. Except for the condition of the ACL, both TKR designs were similar. Subjects were tested 8–14 months post-op in a motion analysis lab using a point cluster marker set and surface electrodes applied to the Vastus Medialis Oblique (VMO), Rectus Femoris (RF), Biceps Femoris (BF) and Semitendinosus (ST). 3D motion and force data and electromyography (EMG) data were collected simultaneously. Subjects were instructed to walk at a comfortable walking speed across a walkway, down a 12.5% downhill slope, and up a staircase. Five trials per activity were collected. Knee kinematics and kinetics were analyzed using BioMove (Stanford, Stanford, CA). The EMG dataset underwent full-wave rectification and was smoothed using a 300ms RMS window. Gait cycle was time normalized to 100%; relative voluntary contraction (RVC) was calculated by dividing the average activation during downhill walking by the maximum EMG value during level walking and multiplying by 100%. Results. There were no significant kinematic or kinetic differences between implant groups for level walking (p≥0.19). Both groups walked at 1.1 m/s on average during level and approximately 0.1 m/s slower during downhill walking, with no differences in speed (p= 0.91 and 0.77, respectively). For both ACL-S and BCR groups, gait changes from level to downhill walking were similar. For downhill walking, ACL-S subjects were significantly more variable (p<0.001) over the gait cycle for all measured kinematics and kinetics. During both downhill walking and stair climbing, the ACL-S group showed an external peak abduction moment (Fig. 1) significantly greater than that of the BCR group (p=0.05, 0.01). Also during stair climbing, ACL-S subjects showed trending higher peak knee adduction moments (p=0.14) and a more pronounced internal/external rotation pattern (Fig. 2) than BCR subjects. Since no peak kinematic/kinetic differences between groups during level walking exist, the mean maximum muscle activation from level walking was used for RVC normalization for other activities. On average, BCR subjects had lower maximum RVCs during downhill walking than the ACL-S subjects. Effect sizes were large for RF (d=0.94), ST (d=0.88), and VMO (d=1.21), the latter being borderline significant (p=0.05). Discussion. Previous studies on the natural knee have established that the ACL contains mechanoreceptors that improve stability of the knee joint. In this study, BCR subjects show less variable gait measures than subjects with traditional posterior cruciate retaining (ACL-S) TKR, possibly indicating more controlled contact kinematics. In addition, EMG results suggest lower muscle co-contraction during downhill walking, also implying greater knee stability in the BCR group. These results are preliminary and more subjects are needed for definite conclusions


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 91 - 91
1 May 2012
Lind M Webster K Feller J McClelland J Wittwer J
Full Access

High tibial osteotomy (HTO) is an established treatment for medial compartment osteoarthritis of the knee; the aim being to achieve a somewhat valgus coronal alignment, thereby unloading the affected medial compartment. This study investigated knee kinematics and kinetics before and after HTO and compared them with matched control data. A three dimensional motion analysis system and two force platforms were used to collect kinematic and kinetic data from eight patients with medial compartment knee osteoarthritis during walking preoperatively and 12 months following HTO (opening wedge). Nine control participants of similar age and the same sex were tested using the same protocol. Sagittal and coronal knee angles and moments were measured on both the operated and non-operated knees and compared between the two time points and between HTO participants and controls. In addition, preoperative and postoperative radiographic coronal plane alignments were compared in the HTO participants. The point at which the mechanical axis passed through the knee joint was corrected from a preoperative mean of 10% tibial width from the medial tibial margin to 56% postoperatively. Stride length and walking speed both improved to essentially normal levels (1.57 m and 1.5 m/s) ostoperatively. In the coronal plane the mean peak adduction angle during stance reduced from 14.3° to 5.2° (control: 6.8°). Mean maximum adduction moments were similarly reduced to levels less than in control participants, in keeping with the aim of the surgical procedure: peak adduction moment 1: pre 3.8, post 2.7, control 3.6 peak adduction moment 2: pre 2.5, post 1.7 and control 2.6. In the sagittal plane, both mean maximum flexion and extension during stance increased postoperatively—extension to greater than in control participants and flexion to almost control levels. The maximum external knee flexor moment during stance also increased to near normal postoperatively. High tibial osteotomy appears to achieve the intended biomechanical effects in the coronal plane (reduced loading of the medial compartment during stance). At the same time there were improvements in sagittal plane kinematics and kinetics which may reflect a reduction in pain. The net effect was to reduce quadriceps demand


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 49 - 49
1 Mar 2021
Pasic N Degen R Burkhart T
Full Access

Hip arthroscopy rates continue to increase. As a result, there is growing interest in capsular management techniques. Without careful preservation and surgical techniques, failure of the repair result in capsular deficiency, contributing to iatrogenic instability and persistent post-operative pain. In this setting, capsular reconstruction may be indicated, however there is a paucity of objective evidence comparing surgical techniques to identify the optimal method. Therefore, the objective of this study was to evaluate the biomechanical effect of capsulectomy and two different capsular reconstruction techniques (iliotibial band [ITB] autograft and Achilles tendon allograft) on hip joint kinematics in both rotation and abduction/adduction. Eight paired fresh-frozen hemi-pelvises were dissected of all overlying soft tissue, with the exception of the hip joint capsule. The femur was potted and attached to a load cell connected to a joint-motion simulator, while the pelvis was secured to a custom-designed fixture allowing adjustment of the flexion-extension arc. Optotrak markers were rigidly attached to the femur and pelvis to track motion of the femoral head with respect to the acetabulum. Pairs were divided into ITB or Achilles capsular reconstruction. After specimen preparation, three conditions were tested: (1) intact, (2) after capsulectomy, and (3) capsular reconstruction (ITB or Achilles). All conditions were tested in 0°, 45°, and 90° of flexion. Internal rotation (IR) and external rotation (ER) as well abduction (ABD) and adduction (ADD) moments of 3 N·m were applied to the femur via the load cell at each position. Rotational range of motion and joint kinematics were recorded. When a rotational force was applied the total magnitude of internal/external rotation was significantly affected by the condition of the capsule, independent of the type of reconstruction that was performed (p=0.001). The internal/external rotation increased significantly by approximately 8° following the capsulectomy (p<0.001) and this was not resolved by either of the reconstructions; there remained a significant difference between the intact and reconstruction conditions (p=0.035). The total anterior/posterior translation was significantly affected by the condition of the capsule (p=0.034). There was a significant increase from 6.7 (6.0) mm when the capsule was intact to 9.0 (6.7) mm following the capsulectomy (p=0.002). Both of the reconstructions (8.6 [5.6] mm) reduced the anterior/posterior translation closer to the intact state. There was no difference between the two reconstructions. When an abduction/adduction force was applied there was a significant increase in the medial-lateral translation between the intact and capsulectomy states (p=0.047). Across all three flexion angles the integrity of the native hip capsule played a significant role in rotational stability, where capsulectomy significantly increased rotational ROM. Hip capsule reconstruction did not restore rotational stability and also increased rotational ROM compared to the intact state a statistically significant amount. However, hip capsule reconstruction restored coronal and sagittal plane stability to approach that of the native hip. There was no difference in stability between ITB and Achilles reconstructions across all testing conditions


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 296 - 296
1 Dec 2013
Duffell L Mushtaq J Masjedi M Cobb J
Full Access

It has been proposed that higher knee adduction moments and associated malalignment in subjects with severe medial knee joint osteoarthritis (OA) is due to anatomical deformities as a result of OA [1, 2]. The emergence of patient-matched implants should allow for correction of any existing malalignment. Currently the plans for such surgeries are often based on three dimensional supine computed tomography (CT) scans or magnetic resonance imaging (MRI), which may not be representative of malalignment during functional loading. We investigated differences in frontal plane alignment in control subjects and subjects with severe knee joint OA who had undergone both supine imaging and gait analysis. Fifteen subjects with severe knee OA, affecting either the medial or lateral compartment, and 18 control subjects were selected from a database established as part of a larger study. All subjects had undergone gait analysis using the Vicon motion capture system. OA subjects had undergone routine CT scans and were scheduled for knee joint replacement surgery. Control subjects had no known musculoskeletal conditions and had undergone MRI imaging of hip, knee and ankle joints. Frontal plane knee joint angles were measured from supine imaging (supine) and from motion capture during standing (static) and during gait at the first peak ground reaction force (gait). OA subjects had a significantly higher BMI (p < 0.01) and different gender composition (13 males and 2 females vs 4 males and 5 females; p = 0.03) compared with controls. Multiple linear regression analysis indicated no significant confounding effect of these differences on frontal plane angles measured in supine, static or gait conditions. For both OA and healthy subjects, frontal plane knee angles were significantly higher during gait compared with supine (p = 0.03 and 0.02, respectively). There were also significant differences in knee alignment between OA and healthy subjects for supine and static (p < 0.05) but not for gait, although this was approaching significance (p = 0.052). Overall there seemed to be higher variation in alignment in the OA subjects (Fig. 1). The significantly higher frontal plane knee joint angles measured in both control and OA subjects during gait compared with supine imaging indicate that functional alignment should be taken into consideration when planning patient-specific surgeries. Higher variation in OA patients may be due to alterations in gait patterns due to pain or degree of wear in their osteoarthritic joints, and requires further investigation. In addition, methodological considerations should be taken when comparing alignment from measurements taken with imaging and motion capture to avoid systematic errors in the data. In conclusion, we believe that both supine and loadbearing imaging are insufficient to gain a full representation of functional alignment, and analysis of functional alignment should be routinely performed for optimal surgical planning