Aims. The purpose of this study was to evaluate the biological fixation of a 3D printed porous implant, with and without different hydroxyapatite (HA) coatings, in a canine model. Materials and Methods. A canine transcortical model was used to evaluate the characteristics of bone ingrowth of Ti6Al4V cylindrical implants fabricated using laser rapid manufacturing (LRM). At four and 12 weeks post-implantation, we performed histological analysis and mechanical push-out testing on three groups of implants: a HA-free control (LRM), LRM with precipitated HA (LRM-PA), and LRM with plasma-sprayed HA (LRM-PSHA). Results. Substantial bone ingrowth was observed in all LRM implants, with and without HA, at both time periods. Bone ingrowth increased from 42% to 52% at four weeks, to 60% to 65% at 12 weeks. Mechanical tests indicated a minimum shear fixation strength of 20 MPa to 24 MPa at four weeks, and 34 MPa to 40 MPa at 12 weeks. There was no significant difference in the amount of bone ingrowth or in the shear strength between the three implant types at either time period. Conclusion. At four and 12 weeks, the 3D printed porous implants exhibited consistent bone ingrowth and high mechanical shear strength. Based on the results of this study, we confirmed the suitability of this novel new
The main advantage of 3D-printed, off-the-shelf acetabular implants is the potential to promote enhanced bony fixation due to their controllable porous structure. In this study we investigated the extent of osseointegration in retrieved 3D-printed acetabular implants. We compared two groups, one made via 3D-printing (n = 7) and the other using conventional techniques (n = 7). We collected implant details, type of surgery and removal technique, patient demographics, and clinical history. Bone integration was assessed by macroscopic visual analysis, followed by sectioning to allow undecalcified histology on eight sections (~200 µm) for each implant. The outcome measures considered were area of bone attachment (%), extent of bone ingrowth (%), bone-implant contact (%), and depth of ingrowth (%), and these were quantified using a line-intercept method.Aims
Methods
3D printing acetabular cups offers the theoretical advantage of enhanced bony fixation due to greater design control of the porous implant surfaces. Analysing retrieved 3D printed implants can help determine whether this design intent has been achieved. We sectioned 14 off-the-shelf retrieved acetabular cups for histological analysis; 7 cups had been 3D printed and 7 had been conventionally manufactured. Some of the most commonly used contemporary designs were represented in both groups, which were removed due to either aseptic loosening, unexplained pain, infection or dislocation. Clinical data was collected for all implants, including their age, gender, and time to revision. Bone ingrowth was evaluated using microscopic assessment and two primary outcome measures: 1) bone area fraction and 2) extent of bone ingrowth. The
Introduction. Porous surfaces developed over the past decades have been shown to promote tissue ingrowth. Hydroxyapatite (HA) coatings have been added to these porous coatings in an attempt to further augment bone ingrowth. The development of
Introduction. As new innovations are developed to improve the longevity of joint replacement components, preclinical testing is necessary in the early stages of research into areas such as osseointegration, metal-cartilage wear and periprosthetic joint infection (PJI). Large-animal studies that test load-bearing components are expensive, however, requiring that animals be housed in special facilities that are not available at all institutions. Comparably, small animal models, such as the rat, offer several advantages including lower cost. Load-bearing implants remain difficult to manufacture via traditional methods in the sizes required for small-animal testing. Recent advances in
This study aimed to assess the carbon footprint associated with total hip arthroplasty (THA) in a UK hospital setting, considering various components within the operating theatre. The primary objective was to identify actionable areas for reducing carbon emissions and promoting sustainable orthopaedic practices. Using a life-cycle assessment approach, we conducted a prospective study on ten cemented and ten hybrid THA cases, evaluating carbon emissions from anaesthetic room to recovery. Scope 1 and scope 2 emissions were considered, focusing on direct emissions and energy consumption. Data included detailed assessments of consumables, waste generation, and energy use during surgeries.Aims
Methods
Custom triflange acetabular components (CTACs) play an important role in reconstructive orthopaedic surgery, particularly in revision total hip arthroplasty (rTHA) and pelvic tumour resection procedures. Accurate CTAC positioning is essential to successful surgical outcomes. While prior studies have explored CTAC positioning in rTHA, research focusing on tumour cases and implant flange positioning precision remains limited. Additionally, the impact of intraoperative navigation on positioning accuracy warrants further investigation. This study assesses CTAC positioning accuracy in tumour resection and rTHA cases, focusing on the differences between preoperative planning and postoperative implant positions. A multicentre observational cohort study in Australia between February 2017 and March 2021 included consecutive patients undergoing acetabular reconstruction with CTACs in rTHA (Paprosky 3A/3B defects) or tumour resection (including Enneking P2 peri-acetabular area). Of 103 eligible patients (104 hips), 34 patients (35 hips) were analyzed.Aims
Methods
Custom-made partial pelvis replacements (PPRs) are increasingly used in the reconstruction of large acetabular defects and have mainly been designed using a triflange approach, requiring extensive soft-tissue dissection. The monoflange design, where primary intramedullary fixation within the ilium combined with a monoflange for rotational stability, was anticipated to overcome this obstacle. The aim of this study was to evaluate the design with regard to functional outcome, complications, and acetabular reconstruction. Between 2014 and 2023, 79 patients with a mean follow-up of 33 months (SD 22; 9 to 103) were included. Functional outcome was measured using the Harris Hip Score and EuroQol five-dimension questionnaire (EQ-5D). PPR revisions were defined as an endpoint, and subgroups were analyzed to determine risk factors.Aims
Methods
The aim of this study was to examine the implant accuracy of custom-made partial pelvis replacements (PPRs) in revision total hip arthroplasty (rTHA). Custom-made implants offer an option to achieve a reconstruction in cases with severe acetabular bone loss. By analyzing implant deviation in CT and radiograph imaging and correlating early clinical complications, we aimed to optimize the usage of custom-made implants. A consecutive series of 45 (2014 to 2019) PPRs for Paprosky III defects at rTHA were analyzed comparing the preoperative planning CT scans used to manufacture the implants with postoperative CT scans and radiographs. The anteversion (AV), inclination (IC), deviation from the preoperatively planned implant position, and deviation of the centre of rotation (COR) were explored. Early postoperative complications were recorded, and factors for malpositioning were sought. The mean follow-up was 30 months (SD 19; 6 to 74), with four patients lost to follow-up.Aims
Methods