Implant wear testing is traditionally undertaken using standardized inputs set out by ISO or ASTM. These inputs are based on a single individual performing a single activity with a specific implant. Standardization helps ensure that implants are tested to a known set of parameters from which comparisons may be drawn but it has limitations as patients perform varied activities, with different implant sizes and designs that produce different kinematics/kinetics. In this study, wear performance has been evaluated using gait implant specific loading/kinematics and comparing to a combination deep knee bend (DKB), step down (SD) and gait implant specific loading on cruciate retaining (CR) rotating platform (RP) total knee replacements (TKR). This combination activity profile better replicates patient activities of daily living (ADL). Two sets of three ATTUNE® size 5 right leg CR RP TKRs (DePuy Synthes, Warsaw, IN) were used in a study to evaluate ADL implant wear. Implant specific loading profiles were produced via a validated finite element lower limb model [1] that uses activity data such as gait (K1L_110108_1_86p), SD (K1L_240309_2_144p), and DKB (K9P_2239_0_9_I1) from the Orthoload database [2] to produce external boundary conditions. Each set of components were tested using a VIVO joint simulator (AMTI, Watertown, MA, Figure 1) for a total of 4.5 million cycles (Mcyc). All cycles were conducted at 0.8Hz in force-control with flexion driven in displacement control. Bovine calf serum lubricant was prepared to a total protein concentration of 18g/L and maintained at 37°±2°C. Wear of the tibial inserts was quantified via gravimetric methods per ISO14243–2:2009(E). Polyethylene tibial insert weights were taken prior to testing and every 0.5Mcyc there after which corresponded to serum exchange intervals. The multi-activity test intervals were split into10 loops of 1,250 DKB, 3,000 SD, and 45,750 gait cycles in series. Based on activity data presented by Wimmer et al. the number of cycles per activity and activities used is sufficient for a person that is considered active [3]. A loaded soak control was used to compensate for fluid absorption in wear rate calculations. Wear rates were calculated using linear regression.INTRODUCTION
METHODS
Mechanical overloading of the knee can occur during activities of daily living such as stair climbing, jogging, etc. In this finite element study we aim to investigate which parameters could detrimentally influence peri-implant bone in the tibial reconstructed knee. Bone quality and patient variables are potential factors influencing knee overloading (Zimmerman 2016). Finite element (FE) models of post-mortem retrieved tibial specimens (n=7) from a previous study (Zimmerman 2016) were created using image segmentation (Mimics Materialise v14) of CT scan data (0.6 mm voxel resolution). Tibial tray and polyethylene inserts were recreated from CT data and measurements of the specimens (Solidworks 2015). Specimens with varying implant geometry (keel/pegged) were chosen for this study. A cohesive layer between bone and cement was included to simulate the behavior of the bone–cement interface using experimentally obtained values. The FE models predict plasticity of bone according to Keyak (2005). Models were loaded to 10 body weight (BW) and then reduced to 1 BW to mimic experimental measurements. Axial FE bone strains at 1 BW were compared with experimental Digital Image Correlation (DIC) bone strains on cut sections of the specimens. After validation of the FE models using strain data, models were rotated and translated to the coordinate system defined in Bergmann (2014). Four loading cases were chosen – walking, descending stairs, sitting down and jogging. Element strains were written to file for post-processing. The bone in all FE models was divided into regions of equal thickness (10 mm) for comparison of strains.INTRODUCTION
METHODS
Soft tissue artefact (STA) affects the kinematics retrieved with skin marker-based motion capture, and thus influences the outcomes of biomechanical models that rely on such kinematics. To date, compensation for STA remains an unsolved challenge due to its complexity. Factors include its dependency on subject, on motion activity and on skin-marker configuration, its non-linearity over the movement cycle, and the scarcity of reference in-vivo estimations. The objective of this study was extending the existing knowledge of the effects of STA on the kinematics of the hip joint and on the hip joint center location, by quantifying them for a sample total hip arthroplasty (THA) population, for a broader range of activities of daily living (ADLs). Four activities of daily living (overground gait, stairs descent, chair rise and putting on socks) were measured simultaneously with optical motion capture (MC) at 100 Hz and with a movable single-plane video-fluoroscopy system (VF) at 25 Hz, for fifteen patients with successful total hip arthroplasty (THA). The joint segment positions were computed by least-square fitting for MC and by semi-automatic 2D/3D registration for VF. Anatomical coordinate systems were defined for each joint segment based on skin markers location at a reference standing position. Errors induced by STA on the retrieved joint motion were computed as the difference between MC-based kinematics and the reference VF-based kinematics. Statistical analysis was carried out to determine the whether the differences between the kinematics obtained with the two methods were significant.Introduction
Methods
Reverse Shoulder Arthroplasty (RSA) is recognized to be an effective solution for rotator cuff deficient arthritic shoulders, but there are still concerns about impingement and range of motion (ROM). Several RSA biomechanical studies have shown that humeral lateralization can increase ROM in planar motions (e.g. abduction). However, there is still a debate whether humeral lateralization should be achieved with a larger sphere diameter or by lateralizing the center of rotation (COR). The latter has shown to decrease the deltoid moment arm and increase shear forces, where the former may pose challenges in implanting the device in small patients. The aim of this study was to evaluate how humeral lateralization achieved by varying COR lateral offset and glenosphere diameter in a reverse implant can affect impingement during activities of daily living (ADLs). Nine shoulder CT scans were obtained from healthy subjects. A reverse SMR implant (LimaCorporate, IT) was virtually implanted on the glenoid and humerus (neck-shaft angle 150°) as per surgical technique using Mimics software (Materialise NV). Implant positioning was assessed and approved by a senior surgeon. The 3D models were imported into a validated shoulder computational model (Newcastle Shoulder Model) to study the effects of humeral lateralization. The main design parameters considered were glenosphere diameter (concentric Ø36mm, Ø40mm, Ø44mm) and COR offset (standard, +2mm, +5mm), for a total of 9 combinations for each subject; −10°, 0° and 10° humeral components versions were analyzed. The model calculated the percentage of impingement (intra-articular, contact of cup with scapula neck and glenoid border; extra-articular, contact of humerus with acromion and coracoid) during 5 ADLs (hand to opposite shoulder, hand to back of head, hand to mouth, drink from mug and place object to head height).Introduction
Methods
While survivorship of total knee arthroplasty (TKA) is excellent, up to 25% of patients remain dissatisfied with their outcome [1, 2]. Knee instability, which is common during high demand activities, contributes to patient dissatisfaction [3]. As younger patients undergo TKA, longevity requirements and functional demands will rise [4]. Design factors influence the functional outcome of the procedure [5, 6], although in clinical studies it can be difficult to distinguish joint mechanics differences between designs due to confounding variability in patient-related factors. The objective of the current study was to assess the stability and mechanics of several current TKA designs during high-demand dynamic activities using a computational model of the lower limb. Three high-demand dynamic activities (gait, stepdown, squat) were simulated in a previously described lower limb model (Fig. 1) [7]. The model included calibrated tibiofemoral (TF) soft-tissue structures, patellofemoral (PF) ligaments and extensor mechanism [8]. Loading conditions for the simulations were derived from telemetric patient data in order to evaluate TKA designs under physiological kinematic and loading conditions [7, 9]. Four fixed-bearing TKA designs (both cruciate-retaining (CR) and posterior-stabilizing (PS) versions) were virtually implanted into the lower limb model and joint motion, contact mechanics and interface loads were evaluated during simulation of each dynamic activity.Introduction:
Methods:
Accurate measurement of knee motion is necessary for assessment of natural joint function and in the diagnosis of pathology. In particular, precise knowledge of natural knee mechanics provides useful metrics for comparison to knee function following total knee arthroplasty (TKA). Reported measurements of natural knee kinematics during activities of daily living are rare, and often do not include both tibiofemoral (TF) and patellofemoral (PF) articulations. What's more, most studies record knee motion of younger subjects that are not necessarily representative of the age range associated with degenerative changes and TKA. The purpose of this study was to measure TF and PF kinematics of healthy older adults as they performed activities of daily living, including tasks considered more demanding for the knee [1]. High speed stereo radiography (HSSR) was used to measure the kinematics of the PF and TF joints. HSSR utilizes two views of the knee to capture 3D sub-mm measurements accurate to within ±0.15 mm in translation and ±0.41° in rotation [2]. Eight healthy subjects (4M/4F, 64.4±8.2 years, BMI: 27.6±4.8 kg/m2) performed six activities of daily living: seated knee extension, lunge, chair rise, gait, pivot and step down (Figure 1). The 3D geometry of the femur, tibia, and patella of each subject was reconstructed from CT and used to track bone motions using Autoscoper (Brown University, Providence RI). Motion of the tibia and patella were reported relative to a coordinate system centered in the posterior condyles of the femur [3]. Average range of motion (ROM) for each DOF was calculated as the difference between the maximum and the minimum value and averaged across the subjects for each activity.Introduction
Methods
The purpose of this retrospective study was to estimate the outcome improvements after Total Hip Arthroplasty (THA) using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) in patients who underwent THA with a navigation system in our institutions, and to compare them with those undergoing THA without a navigation system that had been reported in the literatures. The subjects in this study comprised 245 patients (39 males, 206 females; mean age, 59.9±12.0 years; mean BMI, 22.8±3.2 kg/m2) who underwent THA. All patients had adequate data to allow complete scoring of the WOMAC for a minimum one-year postoperative follow-up. CT-based navigation was used in all THAs. Postoperatively, no restrictions were imposed. A MEDLINE search was conducted using the search terms ‘Total hip’, ‘Quality of life (QOL)’, and ‘WOMAC’. 10 articles evaluated all WOMAC subscales one to two years after THA. The WOMAC subscale scores were compared statistically between our study and the results reported in the 10 articles using Welch's t-test. The present physical function subscale scores were the best of the 10 studies, and in 8 of the 10 studies, the differences were significant. WOMAC subscale results in our study were significantly better than those reported in most articles in which THA was performed without navigation. These results show that THA using navigation can improve patients' postoperative QOL.
Measurements of shoulder kinematics during activities of daily living (ADL) can be used to evaluate patient function before and after treatment and help define device testing conditions. However, due to the difficulties of making 3D motion measurements outside of laboratory conditions, there are few reports of measured shoulder 3D kinematics during ADL. The purpose of this study was to demonstrate the feasibility of using wearable inertial measurement units (IMUs) to track shoulder joint angles. A nonrandom sample of 5 subjects with normal shoulders was selected based on occupation. The occupations were: dental hygienist, primary school teacher, mechanical project engineer, administrative assistant, and retail associate. Subjects wore two OPAL IMUs (APDM, Portland OR) as shown in Figure 1 on the sternum and on the upper arm for approximately 4 hours while at their workplace performing their normal work place activities and then up to 4 hours while off-work. Orientation angles from IMUs have traditionally been estimated by integrating gyroscope data and calculating inclination angles relative to gravity with accelerometers. A significant problem is that inaccuracies inherent in the measurements can degrade accuracy. In this study, we used an Unscented Kalman Filter (UKF) with IMU output to track shoulder angles. The UKF mitigates the effect of random drift by incorporating domain knowledge about the shoulder normal range of motion, and the gyroscope and accelerometer characteristics into the state-space models. Initially, in the horizontal plane, without gravity measurements from the accelerometer to aid the gyroscope data, there were unacceptable errors in transverse rotation. To mitigate this error, additional constraints were applied to model gyroscope drift and a zero velocity update strategy was included. These additions decreased tracker errors in heading by 63%. The resulting accuracy with the modified tracker in all motion planes was about 2° (Figure 2). Subjects commented that the IMUs were well tolerated and did not interfere with their ability to perform tasks in a normal manner. The overall averaged 95th percentile angles (Figure 3) were: flexion 128.8°, adduction 128.4°, and external rotation 69.5°. These peaks angles are similar to other investigator's reports using laboratory simulations of ADL tasks measured with optical and electromagnetic technologies, though this study's observations did show 17% greater extension and 40% greater adduction. Additionally, in these observations, occurrences of maximal internal rotation were rare compared to maximal external rotation and when maximum external rotation did occur, it was in combination with an average flexion angle of 103°. Finally, by performing a Fourier transform of the arm angles and using the 50th percentile frequency the number of arm cycles in a 10 year period was calculated at over 600,000 cycles. Application of the UKF with the additional drift correction made substantial improvements in shoulder tracking performance and this feasibility data suggests that IMUs with the UKF are suitable for extended use outside of laboratory settings. The motion data collected provides a novel description of arm motion during ADLs including estimating the cycle count of the upper arm at more than 600,000 cycles over 10 years.
Experimental knee simulators for component evaluation or An existing finite element model of the KKS was modified to extend the capability, and improve the fidelity, of the computational model beyond the experimental setup. An actuator to allow anterior-posterior (A-P) motion of the hip was included and used to prescribe relative hip-ankle A-P kinematics during the simulations. The quadriceps muscle, which in the experimental simulator consisted of a single quadriceps bundle with a point-to-point line of action, was divided into four heads of the quadriceps with physiological muscle paths. The hamstrings muscle, which was not present in the experiment, was represented by point-to-point actuators in four bundles. A flexible control system was developed which allowed control of the quadriceps and hamstrings actuators to match a knee flexion profile, similar to actuation of the experimental KKS, but also allowed control of the compressive tibiofemoral (TF) joint force, medial-lateral (M-L) load distribution, internal-external (I-E) torque and A-P load at the joint. A series of sensors, measuring all six load components on the medial and lateral compartments of the tibial insert, as well as knee flexion angle, were incorporated into the simulation. Instantaneous measurements from the sensors were fed to a control system, implemented within an Abaqus/Explicit user subroutine (Figure 1). The controller was used to drive actuators in the FE model to match target
Orthopaedic surgeons and their patients continue to seek better functional outcomes after total knee replacement, but TKA designs claim characteristic kinematic performance that is rarely assessed in patients. The objectives of this investigation is to determine the in vivo kinematics in knees with Cruciate Retaining TKA using Patient Specific Technology during activities of daily living and to compare the findings with previous studies of kinematics of other CR TKA designs. Four knees were operated by Triathlon CR TKA using Patient Specific Technology and a fluoroscopic measurement technique has been used to provide detailed three-dimensional kinematic assessment of knee arthroplasty function during three motor tasks. 3D fluoroscopic analysis was performed at 4-month follow-up. The range of flexion was 90°(range 5°–95°) during chair-rising, 80°(range 0°–80°) during step up and 100° (range 0°–100°) during leg extension. The corresponding average external rotation of the femur on the tibial base-plate was 7.6° (range +4.3°; +11.9°), 9.5° (+4.0°; 13.5°) and 11.6° (+4.5°; +16.1°). The mean antero-posterior translations between femoral and tibial components during the three motor tasks were +4.7 (−3.7; +1.0), +6.4 (−3.8; +2.6) and +8,4 (−4.9; +3.5) mm on the medial compartment, and −2.5 (−7.1; −9.6), −3.6 (−6.1; −9.7), −2.6 (−7.7; −10.3) mm on the lateral compartment, respectively, with the medial condyle moving progressively anterior with flexion, and the medial condyle moving progressively posterior with flexion. We compared Triathlon CR PSI TKA results from this study with Genesis II CR TKA, with Duracon CR TKA, with Triathlon CR TKA and with the healthy knee kinematics. The results of this study showed no screw home mechanism. The internal rotation of the tibia with knee flexion is close to normal, better than Genesis II, Duracon and Triathlon CR TKA operated with standard surgery. The medial condyle is characterized by the same pattern of the other implants, with a paradoxical anterior translation of 5 mm. The lateral condyle shows a posterior rollback better than Triathlon CR operated with standard surgery. For the first time is demonstrated that the surgical technique can modify the tibio-femoral kinematics.
Aims. It is well described that patients with bone and joint infections (BJIs) commonly experience significant functional impairment and disability. Published literature is lacking on the impact of BJIs on mental health. Therefore, the aim of this study was to assess health-related quality of life (HRQoL) and the impact on mental health in patients with BJIs. Methods. The AO Trauma Infection Registry is a prospective multinational registry. In total, 229 adult patients with long-bone BJI were enrolled between 1 November 2012 and 31 August 2017 in 18 centres from ten countries. Clinical outcome data, demographic data, and details on infections and treatments were collected. Patient-reported outcomes using the 36-Item Short-Form Health Survey questionnaire (SF-36), Parker Mobility Score, and Katz Index of Independence in
To compare 24-month patient-reported outcomes after surgical treatment or casting in patients age 60 years of age or older with unstable distal radius fractures (DRF's). The Wrist and Radius Injury Surgical Trial (WRIST), is the largest randomized, multicenter trial in Hand Surgery, which enrolled 304 adults with isolated, unstable DRF's at 24 institutions. WRIST participants were followed for 24 months- longest follow-up among prospective studies comparing four treatment methods. Patients who agreed to surgical treatment (n=187) were randomized to internal fixation with volar plate (VLPS), external fixation, or percutaneous pinning; patients who preferred conservative management (n=117) received casting. The primary outcome was 24-month Michigan Hand Outcomes Questionnaire (MHQ) Summary score. Secondary outcomes were MHQ Domain scores. At 24-month assessment, participants' mean MHQ Summary score was 86 (95% CI: 83,88), representing good hand function. Participants reported good return of their
Risk factors for poor outcomes after total knee replacement (TKR) have been identified, but the underlying causes are not fully understood. The aim of this research was to establish the relationship between measurable gait parameters and patients' subjective function, pre and post total knee replacement. 25 subjects underwent gait analysis, before and one year following total knee replacement. Patient reported function was investigated using the
A prospective case control study analysed clinical and radiographic results in patients operated on with the periosteum autologous chondrocyte implantation (ACI) due to cartilage lesions on the femoral condyles over 10 years ago. 31 out of the 45 patients (3 failures, 9 non-responders, 2 others) were available for a continuous clinical (Lyshom/Tegner, IKDC, KOOS) and radiographic (Kellgren-Lawrence) follow-up at 0, 2, 5, and 10 years after the ACI procedure. The patients were sub-grouped into focal cartilage lesions (FL) – 10, osteochondritis dissecans (OCD) – 12, and cartilage lesions with simultaneous ACL reconstruction (ACL) – 9 subgroups. Lysholm, Tegner, and IKCD subjective scores revealed stable results over the period from 2 to 10 years with a significant improvement toward the pre-operative levels, but the patients had not reached their pre-injury Tegner levels. KOOS profile at 10 years was: Pain 78.6, Symptoms 78.1,
Introduction. Robotic systems have been used in TKA to add precision, although few studies have evaluated clinical outcomes. We report on early clinical results evaluating patient reported outcomes (PROs) on a series of robotic-assisted TKA (RAS-TKA) patients, and compare scores to those reported in the literature. Methods. We prospectively consented and enrolled 106 patients undergoing RAS-TKA by a single surgeon performing a measured-resection femur-first technique using a miniature bone-mounted robotic system. Patients completed a KOOS, New Knee Society Score (2011 KSS) and a Veterans RAND-12 (VR-12) pre-operatively and at 3, 6 and 12 months (M) post- operatively. At the time of publication 104, 101, and 78 patients had completed 3M, 6M, and 12M PROs, respectively. Changes in the five KOOS subscales (Pain, Symptoms,
Introduction. Better functional outcomes, lower pain and better stability have been reported with knee designs which restore physiological knee kinematics. Also the ability of the TKA design to properly restore the physiological femoral rollback during knee flexion, has shown to be correlated with better restoration of the flexor/extensor mechanism (appropriate flexor/extensor muscle lever arm, sufficient quadriceps force to extend the knee under load and limited patello-femoral force), which is fundamental to the function of the human knee. The purpose of the study is to compare the kinematics of three different TKA designs, by evaluating knee motion during
Introduction. Partial knee arthroplasty (PKA) has demonstrated the potential to improve patient satisfaction over total knee arthroplasty. It is however perceived as a more challenging procedure that requires precise adaptation to the complex mechanics of the knee. A recently developed PKA system aims to address these challenges by anatomical, compartment specific shapes and fine-tuned mechanical instrumentation. We investigated how closely this PKA system replicates the balance and kinematics of the intact knee. Materials and Methods. Eight post-mortem human knee specimens (age: 55±11 years, BMI: 23±5, 4 male, 4 female) underwent full leg CT scanning and comprehensive robotic (KUKA KR140 comp) assessments of tibiofemoral and patellofemoral kinematics. Specimens were tested in the intact state and after fixed bearing medial PKA. Implantations were performed by two experienced surgeons. Assessments included laxity testing (anterior-posterior: ±100 N, medial-lateral: ±100 N, internal-external: ±3 Nm, varus- valgus: ±12 Nm) under 2 compressive loads (44 N, 500 N) at 7 flexion angles and simulations of level walking, lunge and stair descent based on in-vivo loading profiles. Kinematics were tracked robotically and optically (OptiTrack) and represented by the femoral flexion facet center (FFC) motions. Similarity between intact and operated curves was expressed by the root mean square of deviations (RMSD) along the curves. Group data were summarized by average and standard deviation and compared using the paired Student's T-test (α = 0.05). Results. During the varus-valgus balancing assessment the medial and lateral opening of the PKAs closely resembled the intact openings across the full arch of flexion, with RMSD values of 1.0±0.5 mm and 0.4±0.2 mm respectively. The medial opening was nearly constant across flexion, its average was not statistically different between intact (3.8±1.0 mm) and PKA (4.0±1.1 mm) (p=0.49). Antero-posterior envelope of motion assessments revealed a close match between the intact and PKA group for both compression levels. Net rollback was not statistically different, either under low compression (intact: 10.9±1.5 mm, PKA: 10.7±1.2, p=0.64) or under high compression (intact: 13.2±2.3 mm, PKA: 13.0±1.6 mm, p=0.77). Similarly, average laxity was not statistically different, either under low (intact: 7.7±3.2 mm, PKA: 8.6±2.5 mm, p=0.09) or under high (intact: 7.2±2.6 mm, PKA: 7.8±2.2 mm, p=0.08) compression.
Birmingham Metal-on-metal total hip resurfacing (BHR) is a bone-conserving option for patients with advanced articular damage. While the outcomes of Total Hip Replacement (THR) are well documented, there is a paucity of literature comparing the patient reported outcomes of BHR versus THR. This study aims to compare the patient reported outcomes for an impact on quality of life between patients who had a BHR vs. THR after correcting for selection bias. Patients who underwent a BHR or THR between July 2003 and December 2006 were included. Patient questionnaires included demographic details, co-morbidities, WOMAC, SF-36 Scores. In addition, a 4 point Likert scale was used to measure satisfaction post-operatively. The above data was collected pre-operatively and at 1, 2, 3 and 5 years post-operatively. Data was analysed with SPSS (version 19) software package. All analysis was adjusted for Age, gender, Co-morbidity and pre-operative score by using Multivariate regression analysis using a General Liner Model to rule out the effect of these predictors on outcomes between groups. 337 patients were included (205 for THR and 132 for BHR). BHR patients were younger than THR patients (49 vs. 67 years, p<0.01), were more likely to be male (68% vs. 42% of THR, p<0.01), reported fewer co-morbidities (1.06 vs. 1.59, p<0.01). BHR patients reported better WOMAC pain and function scores at 5 years (p<0.05). For SF-36 scores, BHR patients reported higher scores for all 8 domains at 1 year and 5 year follow up (p<0.05). BHR patients reported higher satisfaction than THR group for return to
In this study we reviewed all Total Elbow Replacements (TER) done in our hospital over eight years period (1997 – 2005), 21 patients (16 females, 5 males) were available for follow up and four were lost (two died and two moved out of the region) with average age of 65 years (range 44 – 77), all procedures were done by two upper limb surgeons (CHB & RGW). 16 patients (14 females, 2 males) had the procedure for Rheumatoid Arthritis and 5 patients (3 males, 2 females) undergone the procedure for post-traumatic arthritis. The average follow up was 61 months (range 12 – 120 months), the Mayo Clinic performance index, the DASH scores and activities of daily living (adopted from Secec Elbow Score) assessment tools were used. In addition, all patients were assessed for loosening using standard AP and lateral radiographs. Sixteen patients had Souter-Starthclyde prosthesis whilst three had Kudo and two had Conrad-Moorey prosthesis. All procedures were done through dorsal approach and all were cemented, the ulnar nerve was not transposed in any of the cases. The average elbow extension lag was 27 degrees (range 15 – 35) with flexion up to 130 degrees (range 110 – 140). Supination was 65 degrees (range 15 – 90) and pronation was 77 (range 55 – 90). The average DASH score was 51.3 (range 19 – 95), the Mayo elbow score was 82 (range 55 – 100) and the average
In this study we reviewed all Total Elbow Replacements (TER) done in our hospital over eight years period (1997 – 2005), 21 patients (16 females, 5 males) were available for follow up and four were lost (two died and two moved out of the region) with average age of 65 years (range 44 – 77), all procedures were done by two upper limb surgeons (CHB & RGW). 16 patients (14 females, 2 males) had the procedure for Rheumatoid Arthritis and 5 patients (3 males, 2 females) undergone the procedure for post-traumatic arthritis. The average follow up was 61 months (range 12 – 120 months), the Mayo Clinic performance index, the DASH scores and activities of daily living (adopted from Secec Elbow Score) assessment tools were used. In addition, all patients were assessed for loosening using standard AP and lateral radiographs. Sixteen patients had Souter-Starthclyde prosthesis whilst three had Kudo and two had Conrad-Moorey prosthesis. All procedures were done through dorsal approach and all were cemented, the ulnar nerve was not transposed in any of the cases. The average elbow extension lag was 27 degrees (range 15 – 35) with flexion up to 130 degrees (range 110 – 140). Supination was 65 degrees (range 15 – 90) and pronation was 77 (range 55 – 90). The average DASH score was 51.3 (range 19 – 95), the Mayo elbow score was 82 (range 55 – 100) and the average