Please check your email for the verification action. You may continue to use the site and you are now logged in, but you will not be able to return to the site in future until you confirm your email address.
Background. Acetabularlabraltears can cause pain and microinstability and are the most common indication for hip arthroscopy. Hip labral repair demonstrates better clinical outcome scores at a mean of 3.5 years post surgery than labral excision and tends to be performed in a younger age group. While different labral stitch configurations are possible, the most frequently used are a mattress stitch passed though the hip labrum at its widest part, or a simple loop surrounding the labrum. To determine the strength of variousrepair techniques and the impact suture passer sizesonhip labrum failure after cyclic loading. Methods. 35 unattached fresh-frozen bovine hip labrums were assigned to 5 repair techniques (7 specimens each): Group 1: horizontal mattress using a penetrating grasper; Group 2: vertical mattress using a penetrating grasper; Group 3: vertical mattress using asuture lasso; Group 4: Oblique repair using a penetrating grasper; Group 5: vertical mattress using a penetrating grasper and monopolar radio frequency device. Using a materials testing machine and after a 10N preload, each contruct was subjected to 20 cycles at 5N–80N. Cyclic elongation, peak-to-peak displacement, ultimate failure load, stiffness, and failure mode were recorded. Results. Group 1 (249N) had lower ultimate load than groups 2 (277N), 3 (289N), 4 (281N), and 5 (278N) (p<0.05) and higher peak to peak displacement, cyclic elongation (14mm) than group 3 (12mm) (p<0.05). Group 2 (15mm) had higher peak to peak displacement than group 3 (p<0.05). Group 3 had lower cyclic elongation and peak to peak displacements than group 4 (p<0.05). Conclusion. A horizontal mattress hip labrum repair demonstrates lower ultimate failure load than a vertical mattress or an oblique suture repair. A smaller diameter suture passing device demonstrated less cyclic displacement but no difference in ultimate failure load than a large diameter device. Radiofrequency treatment did not have any effect on the strength of the suture repair configuration. Level of evidence. Level 5