Advertisement for orthosearch.org.uk
Results 1 - 20 of 71
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 10 | Pages 1401 - 1405
1 Oct 2006
Honl M Schwieger K Salineros M Jacobs J Morlock M Wimmer M

We compared the orientation of the acetabular component obtained by a conventional manual technique with that using five different navigation systems. Three surgeons carried out five implantations of an acetabular component with each navigation system, as well as manually, using an anatomical model. The orientation of the acetabular component, including inclination and anteversion, and its position was determined using a co-ordinate measuring machine. The variation of the orientation of the acetabular component was higher in the conventional group compared with the navigated group. One experienced surgeon took significantly less time for the procedure. However, his placement of the component was no better than that of the less experienced surgeons. Significantly better inclination and anteversion (p < 0.001 for both) were obtained using navigation. These parameters were not significantly different between the surgeons when using the conventional technique (p = 0.966). The use of computer navigation helps a surgeon to orientate the acetabular component with less variation regarding inclination and anteversion


Abstract. Background. Optimal acetabular component position in Total Hip Arthroplasty is vital for avoiding complications such as dislocation, impingement, abductor muscle strength and range of motion. Transverse acetabular ligament (TAL) and posterior labrum have been shown to be a reliable landmark to guide optimum acetabular cup position. There have been reports of iliopsoas impingement caused by both cemented and uncemented acetabular components. Acetabular component mal-positioning and oversizing of acetabular component are associated with iliopsoas impingement. The Psoas fossa (PF) is not a well-regarded landmark to help with Acetabular Component positioning. Our aim was to assess the relationship of the TAL and PF in relation to Acetabular Component positioning. Methods. A total of 12 cadavers were implanted with the an uncemented acetabular component, their position was initially aligned to TAL. Following optimal seating of the acetabular component the distance of the rim of the shell from the PF was noted. The Acetabular component was then repositioned inside the PF to prevent exposure of the rim of the Acetabular component. This study was performed at Smith & Nephew wet lab in Watford. Results. Out of the twelve acetabular components that were implanted parallel to the TAL, all had the acetabular rim very close or outside to the psoas notch with a potential to cause iliopsoas impingement. Alteration of the acetabular component position was necessary in all cadavers to inside the PF to prevent iliopsoas impingement. It was evident that the edge of PF was not aligned with TAL. Conclusion. Optimal acetabular component position is vital to the longevity and outcome following THA. TAL provides a landmark to guide acetabular component position. We feel the PF is a better landmark to allow appropriate positioning of the acetabular component inside bone without exposure of the component rim and thus preventing iliopsoas impingement at the psoas notch. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 23 - 23
1 Mar 2021
Howgate D Oliver M Stebbins J Garfjeld-Roberts P Kendrick B Rees J Taylor S
Full Access

Abstract. Objectives. Accurate orientation of the acetabular component during a total hip replacement is critical for optimising patient function, increasing the longevity of components, and reducing the risk of complications. This study aimed to determine the validity of a novel VR platform (AescularVR) in assessing acetabular component orientation in a simulated model used in surgical training. Methods. The AescularVR platform was developed using the HTC Vive® VR system hardware, including wireless trackers attached to the surgical instruments and pelvic sawbone. Following calibration, data on the relative position of both trackers are used to determine the acetabular cup orientation (version and inclination). The acetabular cup was manually implanted across a range of orientations representative of those expected intra-operatively. Simultaneous readings from the Vicon® optical motion capture system were used as the ‘gold standard’ for comparison. Correlation and agreement between these two methods was determined using Bland-Altman plots, Pearson's correlation co-efficient, and linear regression modelling. Results. A total of 55 separate orientation readings were obtained. The mean average difference in acetabular cup version and inclination between the Vicon and VR systems was 3.4° (95% CI: −3–9.9°), and −0.005° (95% CI: −4.5–4.5°) respectively. Strong positive correlations were demonstrated between the Vicon and VR systems in both acetabular cup version (Pearson's R = 0.92, 99% CI: 0.84–0.96, p<0.001), and inclination (Pearson's R = 0.94, 99% CI: 0.88–0.97, p<0.001). Using linear regression modelling, the adjusted R. 2. for acetabular version was 0.84, and 0.88 for acetabular inclination. Conclusion. The results of this study indicate that the AescularVR platform is highly accurate and reliable in determining acetabular component orientation in a simulated environment. The AescularVR platform is an adaptable tracking system, which may be modified for use in a range of simulated surgical training and educational purposes, particularly in orthopaedic surgery. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 26 - 26
1 Dec 2020
Schotanus M Grammatopoulos G Meermans G
Full Access

Introduction. Acetabular component orientation is an important determinant of outcome following total hip arthroplasty (THA). Although surgeons aim to achieve optimal cup orientation, many studies demonstrate their inability to consistently achieve this. Factors that contribute are pelvic orientation and the surgeon's ability to correctly orient the cup at implantation. The goal of this study was to determine the accuracy with which surgeons can achieve cup orientation angles. Methods. In this in vitro study using a calibrated left and right sawbone hemipelvis model, participants (n=10) were asked to place a cup mounted on its introducer giving different targets. Measurements of cup orientation were made using a stereophotogrammetry protocol to measure radiographic inclination and operative anteversion (OA). A digital inclinometer was used to measure the intra-operative inclination (IOI) which is the angle of the cup introducer relative to the floor. First, the participant stated his or her preferred IOI and OA and positioned the cup accordingly. Second, the participant had to position the cup parallel to the anteversion of the transverse acetabular ligament (TAL). Third, the participant had to position the cup at IOI angles of 35°, 40° and 45°. Fourth, the participant used the mechanical alignment guide (45° of IOI and 30° of OA) to orient the cup. Each task was analysed separately and subgroup analysis included left versus right side and hip surgeons versus non-hip surgeons. Results. For the first task, hip surgeons preferred smaller IOI and larger OA than non-hip surgeons, but there was no significant difference in accuracy between both groups. When aiming for TAL, both surgeon groups performed similar, but accuracy on the non-dominant side was significantly better compared with the dominant side (mean deviation 0.6° SD 2.4 versus −2.6° SD 2.3) (p=0.004). When aiming for a specific IOI target of 35°, 40° or 45°, non-hip surgeons outperformed hip surgeons (mean deviation form target IOI 1.9° SD 2.7 versus −3.1° SD 3.8) (p<0.0001) with less variance (p=0.03). Contrary to version, accuracy on the dominant side was significantly better compared with the non-dominant side (mean deviation −0.4° SD 3.4 versus −2.1° SD 4.8). When using a mechanical guide, surgeons performed similar (0.6° SD 1.2 versus −0.4° SD 2.1 for inclination p=0.11 and −0.5° SD 2.6 versus −1.8° SD 3.3 for version p=0.22) and these values did not differ significantly from the actual IOI and OA of the mechanical guide. When using a mechanical guide, there was no difference in accuracy between the dominant and non-dominant side. Conclusion. There was no difference in accuracy between hip surgeons and non-hip surgeons when they aimed for their preferred IOI and OA or used a mechanical guide. When aiming for a specific IOI target, non-hip surgeons outperformed hip surgeons. Hip surgeons overestimate IOI and underestimate OA, presumably because this helps to achieve the desired radiographic cup orientation. Regarding accuracy, the non-dominant side was better for version and the dominant side for inclination. When aiming for a specific IOI and OA target, using a mechanical guide is significantly better than freehand cup orientation


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 7 | Pages 972 - 975
1 Jul 2006
Spencer JMF Day RE Sloan KE Beaver RJ

Our aim was to assess the intra- and inter-observer reliability in the establishment of the anterior pelvic plane used in imageless computer-assisted navigation. From this we determined the subsequent effects on version and inclination of the acetabular component. A cadaver model was developed with a specifically-designed rod which held the component tracker at a fixed orientation to the pelvis, leaving the anterior pelvic plane as the only variable. Eight surgeons determined the anterior pelvic plane by palpating and registering the bony landmarks as reference points. The exact anterior pelvic plane was then established by using anatomically-placed bone screws as reference points. The difference between the surgeons was found to be highly significant (p < 0.001). The variation was significantly larger for anteversion (. sd. 9.6°) than for inclination (. sd. 6.3°). The present method for registering pelvic landmarks shows significant inaccuracy, which highlights the need for improved methods of registration before this technique is considered to be safe


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 74 - 74
1 May 2017
ten Broeke R Rudolfina R Geurts J Arts J
Full Access

Background. Implant stability and is an important factor for adequate bone remodelling and both are crucial in the long-term clinical survival of total hip arthroplasty (THA). Assessment of early bone remodelling on X-rays during the first 2 years post-operatively is mandatory when stepwise introduction of a new implant is performed. Regardless of fixation type (cemented or cementless), early acetabular component migration is usually the weakest link in THA, eventually leading to loosening. Over the past years, a shift towards uncemented cup designs has occurred. Besides the established hydroxyapatite (HA) coated uncemented cups which provide ongrowth of bone, new uncemented implant designs stimulating ingrowth of bone have increased in popularity. These cups initiate ingrowth of bone into the implant by their open metallic structure with peripheral pores, to obtain a mechanical interlock with the surrounding bone, thereby stabilising the prosthesis in an early stage after implantation. This retrospective study assessed bone remodelling, osseointegration and occurrence of radiolucency around a new ingrowth philosophy acetabular implant. Methods. In a retrospectively, single centre cohort study all patients whom underwent primary THA with a Tritanium acetabular component in 2011 were included. Bone remodelling, osseointegration and occurrence of radiolucency were determined by two reviewers from X-ray images that were made at 6 weeks, 3–6-12 and 24 months post-operatively. Bone contact % was calculated based on the original Charnley and DeLee zones. According to Charnley and DeLee the outer surface of an acetabular cup is divided into 3 zones (1-2-3). For our analysis the original 3 zones were further divided into 2 producing 6 zones 1A to 3B. Each of these 6 zones were then further divided into 4 equal sections. We attributed 25 points per section in which complete bone contact without lucency was observed. If lucency was observed no points were attributed to the section. A fully osteointegrated cup in all 24 sections could therefore attain 600 points. The total of each section and zone was subsequently tallied and recalculated to produce the percentage of bone contact on a 1–100% score. Results. In 2011 131 patients; 54 male and 76 female with average age of 60.83 (SD 12.42) and 60.57 (SD 12.11) year respectively underwent primary THA at our institution and all where included in our study cohort. Majority of this cohort underwent primary THA due to osteoarthrosis and most patients were classified ASO I (18%) or ASA II (65%). At two year clinical follow-up two revision were performed. One constituted a femur and acetabulum revision due to leg length difference and a snapping hip phenomenon. Complications included 3 dislocations (all treated policlinic), 4 deep infections (all treated with Genta PMMA beads with prosthesis in situ and healed) and 1 removal of hematoma. In another patient the femoral component was revised due to a peri-prosthetic fracture. Mean bone contact % values for all Charnley and DeLee zones combined were calculated and improved from 68,18% (SD 22,36) at 6 weeks to 73,61% SD (16,26) at 3 months to 84,21% (SD 19,02) at 6 months to 86,90% (SD 16,0) at 1 year to 92,19% (SD 12,74) at two year follow-up. When analysing the bone contact % per individual zone a remarkable difference was found for zones 2A-B. In contrast to zone 1A-B and 3A-B the initial bone contact % was clearly although not significantly lower until two year follow-up. Conclusions. In this study, the bone apposition around Tritanium actebular component was retrospectively assessed until two year clinical. Our results show excellent bone apposition that continues to improve over time (at least until two year clinical follow-up) suggesting that the open trabecular Ti structure of the Tritanium has a positive effect on cup osseointegration. However, some recent reports have shown the development of reactive lines around cups with porous/trabecular metal surfaces, of which the meaning is still unclear. Our analysis indicated that especially acetabular zone 2A-B according to Charnley&DeLee needs time to establish a direct contact of the implant surface and the surrounding bone tissues. Perhaps this might be explained by reaming technique (underreaming vs line to line reaming) resulting in suboptimal seating of the cup. Therefore, careful follow-up of this new implant technology will remain necessary and continued in this study. We aim to improve cohort size and establish results at longer follow-up times. Furthermore we aim to correlate these results to RSA component migration analysis


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 55 - 55
1 May 2012
Mellon SJ Kwon Y Simpson DJ Murray DW Gill HS
Full Access

Introduction

Metal-on-metal (MoM) hip resurfacing arthroplasty is a popular choice for young and active patients. However, there are concerns recently regarding soft tissue masses or pseudotumours. The appearance of these complications is thought to be related blood metal ion levels. The level of metal ions in blood is thought to be the result of MoM wear. In the present study the contribution of acetabulum orientation to stress distribution was investigated.

Methods

Four subjects with MoM resurfacings and with known blood metal ion levels underwent motion analysis followed by CT scans. The positions of the acetabular (cup) and femoral components were determined the CT data relative to local coordinate systems in the pelvis (PCS) and the femur (FCS). Transformations, calculated from the motion analysis data, between the PCS and FCS gave the position of the cup relative to the femoral component for each frame of captured motion data.

Hip reaction forces were taken from published data1. The intersection of hip reaction force with each subject's cup and the increase in inclination required to move the force to the edge of the cup was calculated for 2% intervals during the stance phase of gait. Finite element models representing each subject's cup and femoral components were created and contact stresses were determined for the native cup inclination angle. For each model, the effect of increasing the inclination of the cup, by up to 10°, in 1° increments, was determined.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 75 - 75
1 Nov 2021
Ramos A Matos M
Full Access

Introduction and Objective. The patients with a total hip arthroplasty is growing in world manly in Europe and USA, and this solution present a high success at 10years in several orthopaedic registers. The application of total press-fit hip fixation presents the most used solution, but presents some failures associated to the acetabular component fixation, associated to the load transfer and bone loss at long term. The aim of this work is to investigate the influence of different acetabular bone loss in the strain distribution in iliac bone. To evaluate implant fixation, an experimental study was performed using acetabular press-fit component simulating different acetabular bone loss and measuring the strain distribution. Materials and Methods. The experimental samples developed was based in an iliac bone model of Sawbones supplier and a acetabular component Titanium (Stryker) in a condition press-fit fixation and was implanted according surgical procedure with 45º inclination angle and 20º in the anteversion angle. Were developed five models with same initial bone, one with intact condition simulating the cartilage between bones and four with different bone loss around the acetabular component. These four models representing the evolution of bone support of acetabular components presented in the literature. The evolution of bone loss was imposed with a CAD CAM process in same iliac bone model. The models were instrumented with 5 rosettes in critical region at the cortical bone to measure the strain evolution along the process. Results. The results of strain gauges present the influence of acetabular component implantation, reducing the bone strains and presented the effect of the strain shielding. The acetabular component works as a shield in the load transfer. The critical region is the posterior region with highest principal strains and the strain effect was observed with different bone loss around acetabular component. The maximum value of principal strain was observed in the intact condition in the anterior region, with 950μ∊. In the posterior superior region, the effect of bone loss is more important presenting a reduction of 500% in the strains. The effect of bone loss is presented in the strains induced with acetabular implantation, in the first step of implantation the maximum strain was 950μ∊ and in the last model the value was 50μ∊, indicating lower press-fit fixation. Conclusions. The models developed allows study the effect of bone loss and acetabular implant fixation in the load transfer at the hip articulation. The results presented a critical region as the anterior-superior and the effect of strain shielding was observed in comparison with intact articulation. The results of press-fit fixation present a reduction of implant stability along bone loss. The process of bone fixation developed present some limitation associated to the bone adhesion in the interface, not considered. Acknowledgement. This work was supported by POCI-01-0145-FEDER-032486,– FCT, by the FEDER, with COMPETE2020 - (POCI), FCT/M


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 9 - 9
1 Dec 2020
Meermans G Kats J Doorn JV Innman M Grammatopoulos G
Full Access

Introduction. In total hip arthroplasty, a high radiographic inclination angle (RI) of the acetabular component has been linked to short- and long-term complications. There are several factors that lead to RI outliers including cup version, pelvic orientation and angle of the cup introducer relative to the floor. The primary aim of this study was to analyse what increases the risk of having a cup with an RI outside the target zone when controlling cup orientation with a digital inclinometer. Methods. In this prospective study, we included 200 consecutive patients undergoing uncemented primary THA in the lateral decubitus position using a posterior approach. Preoperatively, the surgeon determined the target intraoperative inclination (IOI. target. ). The intra-operative inclination of the cup (IOI. cup. ) was measured with the aid of a digital inclinometer after seating of the acetabular component. Anteroposterior pelvic radiographs were made to measure the RI of the acetabular component. The target zones were defined as 30°-45° and 35°-45° of RI. The operative inclination relative to the sagittal plane of the pelvis (OI. math. ) was calculated based on the radiographic inclination and anteversion angle. The difference between two outcome measures was expressed as Δ. Results. The mean RI was 37.9° SD 4.7, there were 12 cases with RI outside the 30°– 45° zone (6%) and 53 outliers (26.5%) with RI outside the 35°-45° zone. The mean absolute ΔIOI. cup. -IOI. target. was 1.2° SD 1.0. The absolute ΔIOI. cup. -IOI. target. was less than 1° in 108 patients (54%), less than 2° in 160 patients (80%), less than 3° in 186 patients (93%), and in 14 patients (7%) the difference was 3°-5°. The mean pelvic motion (ΔOI. math. -IOI. cup. ) was 8.8° SD 3.9 (95% CI 8.2° to 9.3°). The absolute deviation from the mean ΔOI. math. -IOI. cup. , which corresponds with the amount of pelvic motion, was significantly higher in RI outliers compared with non-outliers for both the 30°-45° and 35°-45° inclination zone (7.4° SD 3.3 vs 2.8° SD 2.1 and 4.7° SD 2.8 vs 2.5° SD 2.0 respectively) (p<0.0001). A linear regression analysis demonstrated a strong correlation between ΔOI. math. -IOI. cup. and the RI of the cup (r. 2. =0.70; P<0.0001). A multiple regression was run to predict ΔOI. math. -IOI. cup. from gender, BMI, side and hip circumference. These variables statistically significantly predicted ΔOI. math. -OIa. cup. , F(4, 195) = 19,435, p<0.0001, R2 = 0.285, but only side (p=0.04) and hip circumference (p<0.0001) added statistically significantly to the prediction. Discussion and Conclusion. When using a digital inclinometer 94% of cups had a RI within a 30°-45° zone and 73.5% of cups within a 35°-45° zone using a predefined IOI. target. based on the patient's hip circumference. The difference between the IOI. target. and the IOI. cup. of the acetabular component was less than 3° in 93% and less than 5° in all patients signifying that the surgeons were able to implant the cup close to their chosen intra-operative orientation. Deviation from the mean ΔOI. math. -IOI. cup. was significantly bigger in the RI outliers indicating that RI outliers were caused by more or less than deviation of the sagittal plane of the pelvis at time of cup impaction


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 9 - 9
1 Dec 2021
Edwards T Soussi D Gupta S Patel A Liddle A Khan S Cobb J Logishetty K
Full Access

Abstract. Objectives. Non-technical skills including teamwork play a pivotal role in surgical outcomes. Virtual reality is effective at improving technical skills, however there is a paucity of evidence on team-based virtual reality (VR) training. This study aimed to assess if multiplayer virtual reality training was superior to solo training for acquisition of both technical and non-technical skills in learning the complex anterior approach total hip arthroplasty operation. Methods. 10 novice surgeons and 10 novice scrub nurses, were randomised to solo or team virtual reality training to perform anterior approach total hip arthroplasty. Solo participants trained with virtual avatar counterparts, whilst teams trained in pairs (surgeon and scrub nurse). Both groups underwent 5 VR training sessions over 6 weeks. Then, they underwent a real-life assessment in which they performed AA-THA on a high-fidelity model with real equipment in a simulated operating theatre. Teams performed together and solo participants were randomly paired up with a solo player of the opposite role. Videos of the assessment were marked by two blinded expert assessors. Outcomes were procedure time, procedural errors from an expert pre-defined protocol and acetabular component positioning. Non-technical skills were assessed using the NOTECHs II and NOTSS scores. Results. Teams were 28.11% faster than solos in the real world assessment (31.22 minutes ±2.02 vs 43.43 ±2.71, p=0.01), with 34.91% less errors (−15.25 errors ±3.09 vs −23.43 ±1.84, p=0.04). Teams had significantly higher NOTSS and NOTECHS II scores when compared to solos (p<0.001). 8/10 surgeons placed the acetabular component within the target safe zone. Conclusions. Multiplayer training appears to lead to faster surgery with fewer technical errors and the development of superior non-technical skills. VR learnt skills appear to translate to the physical world. This supports the application of multidisciplinary learning to create a more integrated approach to surgical team training


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 32 - 32
1 Dec 2021
Edwards T Khan S Patel A Gupta S Soussi D Liddle A Cobb J Logishetty K
Full Access

Abstract. Objectives. Evidence supporting the use of immersive virtual reality (iVR) training in orthopaedic procedures is rapidly growing. However, the impact of the timing of delivery of this training is yet to be tested. This study investigated whether spaced iVR training is more effective than massed iVR training for novices learning hip arthroplasty. Methods. 24 medical students with no hip arthroplasty experience were randomised to learning total hip arthroplasty using the same iVR simulation training either once-weekly or once-daily for four sessions. Participants underwent a baseline physical world assessment to orientate an acetabular component on a saw bone pelvis, and a baseline knowledge test. In iVR, we recorded procedural errors, time, numbers of prompts required and path lengths of the hands and head across 4 sessions. To assess skill retention, the iVR and baseline physical world assessments were repeated at one-week and one-month. Results. Baseline characteristics between the groups were comparable (p > 0.05). The daily group demonstrated faster skills acquisition, reducing the mean number of procedural errors from 76.8±37.5 (S1) to 11.1±10.1 (S4), compared to the weekly group improvement from 71.1±19.1 (S1) to 17.2±10.6 (S4), p < 0.001. The weekly group error count plateaued remaining at 16±6.7 at 1-week and 17.5±8.5 at one-month, the daily group however, showed poor retention with error counts rising to 17.8±10.5 at 1 week and becoming higher than the weekly group at one-month to (23.2±13.0 vs 17.5±10.5). A similar effect was noted for procedural time and the number of assistive prompts. In the real-world assessment, both groups significantly improved the accuracy of their acetabular component positioning, these improvements were equally maintained. Conclusions. Daily iVR training facilitates faster skills acquisition, however weekly practice has superior skills retention. Skills learnt using both regimes demonstrate sustained transfer to the real-world


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 148 - 148
4 Apr 2023
Jørgensen P Kaptein B Søballe K Jakobsen S Stilling M
Full Access

Dual mobility hip arthroplasty utilizes a freely rotating polyethylene liner to protect against dislocation. As liner motion has not been confirmed in vivo, we investigated the liner kinematics in vivo using dynamic radiostereometry. 16 patients with Anatomical Dual Mobility acetabular components were included. Markers were implanted in the liners using a drill guide. Static RSA recordings and patient reported outcome measures were obtained at post-op and 1-year follow-up. Dynamic RSA recordings were obtained at 1-year follow-up during a passive hip movement: abduction/external rotation, adduction/internal rotation (modified FABER-FADIR), to end-range and at 45° hip flexion. Liner- and neck movements were described as anteversion, inclination and rotation. Liner movement during modified FABER-FADIR was detected in 12 of 16 patients. Median (range) absolute liner movements were: anteversion 10° (5–20), inclination 6° (2–12), and rotation 11° (5–48) relative to the cup. Median absolute changes in the resulting liner/neck angle (small articulation) was 28° (12–46) and liner/cup angle (larger articulation) was 6° (4–21). Static RSA showed changes in median (range) liner anteversion from 7° (-12–23) postoperatively to 10° (-3–16) at 1-year follow-up and inclination from 42 (35–66) postoperatively to 59 (46–80) at 1-year follow-up. Liner/neck contact was associated with high initial liner anteversion (p=0.01). The polyethylene liner moves over time. One year after surgery the liner can move with or without liner/neck contact. The majority of movement is in the smaller articulation between head and liner


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 132 - 132
4 Apr 2023
Callary S Abrahams J Zeng Y Clothier R Costi K Campbell D Howie D Solomon L
Full Access

First-time revision acetabular components have a 36% re-revision rate at 10 years in Australia, with subsequent revisions known to have even worse results. Acetabular component migration >1mm at two years following revision THA is a surrogate for long term loosening. This study aimed to measure the migration of porous tantalum components used at revision surgery and investigate the effect of achieving press-fit and/or three-point fixation within acetabular bone. Between May 2011 and March 2018, 55 patients (56 hips; 30 female, 25 male) underwent acetabular revision THR with a porous tantalum component, with a post-operative CT scan to assess implant to host bone contact achieved and Radiostereometric Analysis (RSA) examinations on day 2, 3 months, 1 and 2 years. A porous tantalum component was used because the defects treated (Paprosky IIa:IIb:IIc:IIIa:IIIb; 2:6:8:22:18; 13 with pelvic discontinuity) were either deemed too large or in a position preventing screw fixation of an implant with low coefficient of friction. Press-fit and three-point fixation of the implant was assessed intra-operatively and on postoperative imaging. Three-point acetabular fixation was achieved in 51 hips (92%), 34 (62%) of which were press-fit. The mean implant to host bone contact achieved was 36% (range 9-71%). The majority (52/56, 93%) of components demonstrated acceptable early stability. Four components migrated >1mm proximally at two years (1.1, 3.2, 3.6 and 16.4mm). Three of these were in hips with Paprosky IIIB defects, including 2 with pelvic discontinuity. Neither press-fit nor three-point fixation was achieved for these three components and the cup to host bone contact achieved was low (30, 32 and 59%). The majority of porous tantalum components had acceptable stability at two years following revision surgery despite treating large acetabular defects and poor bone quality. Components without press-fit or three-point fixation were associated with unacceptable amounts of early migration


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 129 - 129
4 Apr 2023
Adla P Iqbal A Sankar S Mehta S Raghavendra M
Full Access

Intraoperative fractures although rare are one of the complications known to occur while performing a total hip arthroplasty (THA). However, due to lower incidence rates there is currently a gap in this area of literature that systematically reviews this important issue of complications associated with THA. Method: We looked into Electronic databases including PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), the archives of meetings of orthopaedic associations and the bibliographies of included articles and asked experts to identify prospective studies, published in any language that evaluated intra-operative fractures occurring during total hip arthroplasty from the year 1950-2020. The screening, data extraction and quality assessment were carried out by two researchers and if there was any discrepancy, a third reviewer was involved. Fourteen studies were identified. The reported range of occurrence of fracture while performing hip replacement surgery was found to be 0.4-7.6%. Major risk factors identified were surgical approaches, Elderly age, less Metaphyseal-Diaphyseal Index score, change in resistance while insertion of the femur implants, inexperienced surgeons, uncemented femoral components, use of monoblock elliptical components, implantation of the acetabular components, patients with ankylosing spondylitis, female gender, uncemented stems in patients with abnormal proximal femoral anatomy and with cortices, different stem designs, heterogeneous fracture patterns and toothed design. Intraoperative fractures during THA were managed with cerclage wire, femoral revision, intramedullary nail and cerclage wires, use of internal fixation plates and screws for management of intra operative femur and acetabular fractures. The main reason for intraoperative fracture was found to be usage of cementless implants but planning and timely recognition of risk factors and evaluating them is important in management of intraoperative fractures. Adequate surgical site exposure is critical especially during dislocation of hip, reaming of acetabulum, impaction of implant and preparing the femoral canal for stem insertion. Eccentric and increased reaming of acetabulum to accommodate a larger cup is to be avoided, especially in females and elderly patients as the acetabulum is thinner. However, this area requires more research in order to obtain more evidence on effectiveness, safety and management of intraoperative fractures during THA


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 104 - 104
4 Apr 2023
Edwards T Khan S Patel A Gupta S Soussi D Liddle A Cobb J Logishetty K
Full Access

Evidence supporting the use of virtual reality (VR) training in orthopaedic procedures is rapidly growing. However, the impact of the timing of delivery of this training is yet to be tested. We aimed to investigate whether spaced VR training is more effective than massed VR training. 24 medical students with no hip arthroplasty experience were randomised to learning the direct anterior approach total hip arthroplasty using the same VR simulation, training either once-weekly or once-daily for four sessions. Participants underwent a baseline physical world assessment on a saw bone pelvis. The VR program recorded procedural errors, time, assistive prompts required and hand path length across four sessions. The VR and physical world assessments were repeated at one-week, one-month, and 3 months after the last training session. Baseline characteristics between the groups were comparable (p > 0.05). The daily group demonstrated faster skills acquisition, reducing the median ± IQR number of procedural errors from 68 ± 67.05 (session one) to 7 ± 9.75 (session four), compared to the weekly group's improvement from 63 ± 27 (session one) to 13 ± 15.75 (session four), p < 0.001. The weekly group error count plateaued remaining at 14 ± 6.75 at one-week, 16.50 ± 16.25 at one-month and 26.45 ± 22 at 3-months, p < 0.05. However, the daily group showed poorer retention with error counts rising to 16 ± 12.25 at one-week, 17.50 ± 23 at one-month and 41.45 ± 26 at 3-months, p<0.01. A similar effect was noted for the number of assistive prompts required, procedural time and hand path length. In the real-world assessment, both groups significantly improved their acetabular component positioning accuracy, and these improvements were equally maintained (p<0.01). Daily VR training facilitates faster skills acquisition; however weekly practice has superior skills retention


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 549 - 556
1 Apr 2007
Udofia I Liu F Jin Z Roberts P Grigoris P

Finite element analysis was used to examine the initial stability after hip resurfacing and the effect of the procedure on the contact mechanics at the articulating surfaces. Models were created with the components positioned anatomically and loaded physiologically through major muscle forces. Total micromovement of less than 10 μm was predicted for the press-fit acetabular components models, much below the 50 μm limit required to encourage osseointegration. Relatively high compressive acetabular and contact stresses were observed in these models. The press-fit procedure showed a moderate influence on the contact mechanics at the bearing surfaces, but produced marked deformation of the acetabular components. No edge contact was predicted for the acetabular components studied. It is concluded that the frictional compressive stresses generated by the 1 mm to 2 mm interference-fit acetabular components, together with the minimal micromovement, would provide adequate stability for the implant, at least in the immediate post-operative situation


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 76 - 76
1 Nov 2021
Turchetto L Saggin S
Full Access

Introduction and Objective. The surgical strategy for acetabular component revision is determined by available host bone stock. Acetabular bone deficiencies vary from cavitary or segmental defects to complete discontinuity. For segmental acetabular defects with more than 50% of the graft supporting the cup it is recommended the application of reinforcement ring or ilioischial antiprotrusio devices. Acetabular reconstruction with the use of the antiprotrusion cage (APC) and allografts represents a reliable procedure to manage severe periprosthetic deficiencies with highly successful long-term outcomes in revision arthroplasty. Objective. We present our experience, results, critical issues and technical innovations aimed at improving survival rates of antiprotrusio cages. Materials and Methods. From 2004 to 2019 we performed 69 revisions of the acetabulum using defrosted morcellized bone graft and the Burch Schneider anti-protrusion cage. The approach was direct lateral in 25 cases, direct anterior in 44. Patients were re-evaluated with standard radiography and clinical examination. Results. Eight patients died from causes not related to surgery, and two patients were not available for follow up. Five patients were reviewed for, respectively, non-osseointegration of the ring, post-traumatic loosening with rupture of the screws preceded by the appearance of supero-medial radiolucency, post-traumatic rupture of the distal flange, post-traumatic rupture of the cemented polyethylene-ceramic insert, and dislocation treated with new dual-mobility insert. Among these cases, the first three did not show macroscopic signs of osseointegration of the ring, and the only areas of stability were represented by the bone-cement contact at the holes in the ring. Although radiographic studies have shown fast remodeling of the bone graft and the implant survival range from 70% to 100% in the 10-year follow up, the actual osseointegration of the ring has yet to be clarified. To improve osseointegration of the currently available APC whose metal surface in contact with the bone is sandblasted, we combined the main features of the APC design long validated by surgical experience with the 3D-Metal Technology for high porosity of the external surface already applied to and validated with the press fit cups. The new APC design is produced with the 3D-Metal technology using Titanium alloy (Ti6Al4V ELI) that Improves fatigue resistance, primary stability and favorable environment for bone graft ingrowth. We preview the results of the first cases with short-term follow up. Conclusions. Acetabular reconstruction with impacted morcellized bone graft and APC is a current and reliable surgical technique that allows the restoration of bone loss with a high survival rate of the implant in the medium to long term. The new 3D Metal Cage is designed to offer high friction for the initial stability. The high porosity of the 3D Metal structure creates a favorable environment for bone growth, thus providing valid secondary fixation reproducing the results achieved with the 3D metal press fit cup


Bone & Joint Research
Vol. 6, Issue 1 | Pages 52 - 56
1 Jan 2017
Hothi HS Kendoff D Lausmann C Henckel J Gehrke T Skinner J Hart A

Objectives. Mechanical wear and corrosion at the head-stem junction of total hip arthroplasties (THAs) (trunnionosis) have been implicated in their early revision, most commonly in metal-on-metal (MOM) hips. We can isolate the role of the head-stem junction as the predominant source of metal release by investigating non-MOM hips; this can help to identify clinically significant volumes of material loss and corrosion from these surfaces. Methods. In this study we examined a series of 94 retrieved metal-on-polyethylene (MOP) hips for evidence of corrosion and material loss at the taper junction using a well published visual grading method and an established roundness-measuring machine protocol. Hips were retrieved from 74 male and 20 female patients with a median age of 57 years (30 to 76) and a median time to revision of 215 months (2 to 324). The reasons for revision were loosening of both the acetabular component and the stem (n = 29), loosening of the acetabular component (n = 58) and infection (n = 7). No adverse tissue reactions were reported by the revision surgeons. Results. Evidence of corrosion was observed in 55% of hips. The median Goldberg taper corrosion score was 2 (1 to 4) and the annual rate of material loss at the taper was 0.084 mm. 3. /year (0 to 0.239). The median trunnion corrosion score was 1 (1 to 3). Conclusions. We have reported a level of trunnionosis for MOP hips with large-diameter heads that were revised for reasons other than trunnionosis, and therefore may be clinically insignificant. Cite this article: H. S. Hothi, D. Kendoff, C. Lausmann, J. Henckel, T. Gehrke, J. Skinner, A. Hart. Clinically insignificant trunnionosis in large-diameter metal-on-polyethylene total hip arthroplasty. Bone Joint Res 2017;6:52–56. DOI: 10.1302/2046-3758.61.BJR-2016-0150.R2


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 5 - 5
1 Apr 2017
Alshuhri A Miles A Cunningham J
Full Access

Introduction. Aseptic loosening of the acetabular cup in total hip replacement (THR) remains a major problem. Current diagnostic imaging techniques are ineffective at detecting early loosening, especially for the acetabular component. The aim of this preliminary study was to assess the viability of using a vibration analysis technique to accurately detect acetabular component loosening. Methods. A simplified acetabular model was constructed using a Sawbones foam block into which an acetabular cup was fitted. Different levels of loosening were simulated by the interposition of thin layer of silicon between the acetabular component and the Sawbones block. This included a simulation of a secure (stable) fixation and various combinations of cup zone loosening. A constant amplitude sinusoidal excitation with a sweep range of 100–1500 Hz was used. Output vibration from the model was measured using an accelerometer and an ultrasound probe. Loosening was determined from output signal features such as the number and relative strength of the observed harmonic frequencies. Results. Both measurement methods were capable of measuring the output vibration. Preliminary findings show different patterns in the output signal spectra were visible when comparing the stable cup with the 1mm of simulated spherical loosening at driving frequencies 1050 Hz, 1100 Hz and 1150 Hz (p < 0.05) using the accelerometer, whereas for ultrasound at frequencies 950 Hz and 1350 Hz (p < 0.05). Conclusions. Experimental testing showed that vibration analysis could be used as a potential detection method for acetabular cup component loosening using either an accelerometer or ultrasound probe to detect the vibration. However, the capacity of ultrasound to overcome the attenuating effect of the surrounding soft tissues and its high signal to noise ratio suggest it has the best potential for clinical use


Bone & Joint Research
Vol. 4, Issue 1 | Pages 6 - 10
1 Jan 2015
Goudie ST Deakin AH Deep K

Objectives. Acetabular component orientation in total hip arthroplasty (THA) influences results. Intra-operatively, the natural arthritic acetabulum is often used as a reference to position the acetabular component. Detailed information regarding its orientation is therefore essential. The aim of this study was to identify the acetabular inclination and anteversion in arthritic hips. Methods. Acetabular inclination and anteversion in 65 symptomatic arthritic hips requiring THA were measured using a computer navigation system. All patients were Caucasian with primary osteoarthritis (29 men, 36 women). The mean age was 68 years (SD 8). Mean inclination was 50.5° (SD 7.8) in men and 52.1° (SD 6.7) in women. Mean anteversion was 8.3° (SD 8.7) in men and 14.4° (SD 11.6) in women. . Results. The difference between men and women in terms of anteversion was significant (p = 0.022). In 75% of hips, the natural orientation was outside the safe zone described by Lewinnek et al (anteversion 15° ± 10°; inclination 40° ± 10°). Conclusion. When using the natural acetabular orientation to guide component placement, it is important to be aware of the differences between men and women, and that in up to 75% of hips natural orientation may be out of what many consider to be a safe zone. Cite this article: Bone Joint Res 2015;4:6–10