Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 51 - 51
1 Jul 2014
Vanden Berghe P Demol J Gelaude F Vander Sloten J
Full Access

Summary. This work proposes a novel, automatic method to obtain an anatomical reconstruction for 3D segmented bones with large acetabular defects. The method works through the fitting of a Statistical Shape Model to the non-defect parts of the bone. Introduction. Patient-specific implants can be used to treat patients with large acetabular bone defects (IIa-c, IIIb, Paprosky 1994). These implants require a full 3D preoperative planning that includes segmentation of volumetric images (CT or MRI), extraction of the 3D shape, reconstruction of the bone defect into its anatomic (non-defect) state, design of an implant with a perfect fit and optimal placement of the screws. The anatomic reconstruction of the bone defect will play a key role in diagnosing the amount of bone loss and in the design of the implant. Previous reconstruction methods rely on a healthy contralateral (Gelaude 2007); however this is not always available (e.g. partial scan or implant present). Statistical shape models (SSM) of healthy bones can help to increase the accuracy and usability of the reconstruction and will decrease the manual labor and user dependency. Skadlubowicz (2009) illustrated the use of an SSM to reconstruct pelvic bones with tumor defects; however tumors generally affect a smaller region of the bone so that the reconstruction will be easier than in large acetabular bone defects. Also, the tumor reconstruction method uses 80 manually indicated landmarks, while the proposed method only uses 14. Patients & Methods. CT-scans from subjects with a healthy hemi-pelvis (15 male, 33 female, mean age: 69±20) were used to generate an SSM. The CT-scans were segmented using Mimics (Materialise NV, Belgium) to create a triangulated mesh. Preprocessing of the meshes ensured that the triangulation was smooth and uniform to help solve the corresponding point problem. An algorithm based on Redert (1999) was used to morph the template hemi-pelvis onto each dataset entity, creating a dataset with corresponding points. From this dataset the SSM was calculated using principal component analysis, so that the principal components serve as parameters for the mathematical model of the hemi-pelvis. To fit the SSM to a new defect hemi-pelvis, a matching algorithm was used. The algorithm varies the Principal Components independently optimizing the distance of the non-defect parts of the defect hemi-pelvis to the SSM sample. To validate the reconstruction method, 6 healthy bone meshes were used to generate a synthetic defect in the acetabular region. The original mesh was used as ‘golden standard’ to measure the reconstruction error. To illustrate the clinical use of the reconstruction method, one hemi-pelvis with a substantial defect was reconstructed. Results. The correspondence error for the morphing algorithm was 4.68±0.78 mm. The leave-one-out error for the SSM was 1.30±0.96 mm. The reconstruction error for the non-defect part was 1.44±1.13mm and for the reconstructed part 2.15±1.53mm. Discussion/Conclusion. The proposed method performs comparable to the contralateral method and the tumor reconstruction method, without the need of a healthy contralateral geometry. Consequently, the validation and the clinical illustration show that the proposed method is promising for automatic reconstruction of large acetabular defects


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 1 | Pages 179 - 185
1 Jan 2010
Väänänen P Pajamäki I Paakkala A Nurmi JT Pajamäki J

We used a biodegradable mesh to convert an acetabular defect into a contained defect in six patients at total hip replacement. Their mean age was 61 years (46 to 69). The mean follow-up was 32 months (19 to 50). Before clinical use, the strength retention and hydrolytic in vitro degradation properties of the implants were studied in the laboratory over a two-year period. A successful clinical outcome was determined by the radiological findings and the Harris hip score.

All the patients had a satisfactory outcome and no mechanical failures or other complications were observed. No protrusion of any of the impacted grafts was observed beyond the mesh. According to our preliminary laboratory and clinical results the biodegradable mesh is suitable for augmenting uncontained acetabular defects in which the primary stability of the implanted acetabular component is provided by the host bone. In the case of defects of the acetabular floor this new application provides a safe method of preventing graft material from protruding excessively into the pelvis and the mesh seems to tolerate bone-impaction grafting in selected patients with primary and revision total hip replacement.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 121 - 126
1 Jan 2007
Jensen TB Overgaard S Lind M Rahbek O Bünger C Søballe K

Impacted bone allograft is often used in revision joint replacement. Hydroxyapatite granules have been suggested as a substitute or to enhance morcellised bone allograft. We hypothesised that adding osteogenic protein-1 to a composite of bone allograft and non-resorbable hydroxyapatite granules (ProOsteon) would improve the incorporation of bone and implant fixation. We also compared the response to using ProOsteon alone against bone allograft used in isolation. We implanted two non-weight-bearing hydroxyapatite-coated implants into each proximal humerus of six dogs, with each implant surrounded by a concentric 3 mm gap. These gaps were randomly allocated to four different procedures in each dog: 1) bone allograft used on its own; 2) ProOsteon used on its own; 3) allograft and ProOsteon used together; or 4) allograft and ProOsteon with the addition of osteogenic protein-1.

After three weeks osteogenic protein-1 increased bone formation and the energy absorption of implants grafted with allograft and ProOsteon. A composite of allograft, ProOsteon and osteogenic protein-1 was comparable, but not superior to, allograft used on its own.

ProOsteon alone cannot be recommended as a substitute for allograft around non-cemented implants, but should be used to extend the volume of the graft, preferably with the addition of a growth factor.