Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 57 - 57
1 Apr 2017
Lewallen D
Full Access

Major bone loss involving the acetabulum can be seen during revision THA due to component loosening, migration or osteolysis and can also occur as a sequela of infected THA. Uncemented porous ingrowth components can be used for reconstruction of the vast majority of revision cases, where smaller segmental or cavitary defects are typically present. But when stable structural support on host bone is lacking, highly porous metal acetabular augments have been described as an alternative to large structural allograft, avoiding the potential for later graft resorption and the resulting loss of mechanical support that can follow. The fundamental concept behind these acetabular augments is the provision of critical additional fixation, structural support and increased contact area against host bone over the weeks following surgery while the desired ingrowth into porous implant surfaces is occurring. Technique: Three separate patterns of augment placement have been utilised in our practice since the development of these implants: Type 1 - augment screwed onto the superolateral acetabular rim in a “flying buttress” configuration for treatment of a segmental rim defect, Type 2 – augment placed superiorly against host and then fixed (with cement) to the acetabular component adjacent to the cup to fill a mainly elliptical cavitary defect, and Type 3 – augment(s) placed medial to the cup to fill a protrusio type cavitary or combined cavitary segmental defect of the superomedial or medial wall, and allow peripheral cup placement against the still intact acetabular rim. In all cases the acetabular component and augment interface is fixed together with cement, with care to prevent any cement extrusion between any implant and the bone. When possible, we now prefer to place the acetabular component first and fix it provisionally with 2 or more screws, and then place the augments second as this is technically quicker and easier. This order of insertion is only possible though in type 1 and a few select type 2 cases. Type 3 cases always require placement of one or more augments first, before cup insertion. Supplemental cancellous bone graft is used routinely. Results: From 2000 through 2007, porous tantalum acetabular augments were used very selectively in 85 revision THA procedures out of total of 1,789 revision hip cases performed at our institution in that time frame. All cases had associated massive acetabular deficiency precluding stable mechanical support for a cup alone. Fifty-eight hips had complete radiographic as well as clinical follow at minimum 5 years. The majority of patients had either Paprosky type 3A defects (28/58, 48%) or 3B defects (22/58, 38%). Ten out of 58 had pre-operative pelvic discontinuities. At 5 years, 2/58 (3%) were revised for aseptic loosening and another 6/58 demonstrated incomplete radiolucencies between the acetabular shell and zone 3. One of the revised cups and 5 of 6 of the cups with radiolucencies had an associated pelvic discontinuity. Summary: Highly porous metal acetabular augments are an infrequently needed, but extremely valuable, versatile and reliable adjunctive fixation method for use with uncemented acetabular components during complex revision THA associated with major bone deficiency. Intermediate term durability and apparent radiographic incorporation has been very good despite the complex reconstructions originally required. This technique can allow the avoidance of structural bone grafting for even the most massive of bone defect problems, but additional followup is needed to see how durable these encouraging results are over the longer term


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 99 - 99
1 Aug 2017
Lewallen D
Full Access

Major bone loss involving the acetabulum can be seen during revision THA due to component loosening, migration or osteolysis and can also occur as a sequela of infected THA. Uncemented porous ingrowth components can be used for reconstruction of the vast majority of revision cases, where smaller segmental or cavitary defects are typically present. But when stable structural support on host bone is lacking, highly porous metal acetabular augments have been described as an alternative to large structural allograft. The fundamental concept behind these acetabular augments is the provision of critical additional fixation, structural support and increased contact area against host bone over the weeks following surgery while the desired ingrowth into porous implant surfaces is occurring. Three separate patterns of augment placement have been utilised in our practice since the development of these implants a decade ago: Type 1 - augment screwed onto the superolateral acetabular rim in a “flying buttress” configuration for treatment of a segmental rim defect, Type 2 – augment placed superiorly against host and then fixed to the acetabular component adjacent to the cup to fill a mainly elliptical cavitary defect, and Type 3 – augment(s) placed medial to the cup to fill a protrusio type cavitary or combined cavitary segmental defect of the superomedial or medial wall, and allow peripheral cup placement against the still intact acetabular rim. In all cases the acetabular component and augment interface is fixed together with cement, with care to prevent any cement extrusion between any implant and the bone. When possible, we now prefer to place the acetabular component first and fix it provisionally with 2 or more screws, and then place the augments second as this is technically quicker and easier. This order of insertion is only possible in type 1 and a few select type 2 cases. Type 3 cases always require placement of one or more augments first, before cup insertion. Supplemental cancellous bone graft is used routinely, but the need for structural bone is avoided. From 2000 through 2007, porous tantalum acetabular augments were used very selectively in 85 revision THA procedures out of total of the 1,789 revision hip cases performed at our institution. All cases had associated massive acetabular deficiency precluding stable mechanical support for a cup alone. Fifty-eight hips had complete radiographic and clinical follow at minimum 5 years. The majority of patients had either Paprosky type 3A defects (28/58, 48%) or 3B defects (22/58, 38%). Ten out of 58 had pre-operative pelvic discontinuities. Three separate patterns of augment placement were utilised: Type 1 - augment screwed onto the superolateral acetabular rim (21%), Type 2 – augment fixed to the acetabular component adjacent to the cup to fill a mainly elliptical cavitary defect (34%), and Type 3 – augment(s) placed medial to the cup to fill a protrusio type cavitary or combined cavitary segmental defect of the superomedial medial wall (45%). At 5 years, 2/58 (3%) were revised for aseptic loosening and another 6/58 demonstrated incomplete radiolucencies between the acetabular shell and zone 3. One of the revised cups and 5 of 6 of the cups with radiolucencies had an associated pelvic discontinuity. Highly porous metal acetabular augments are an infrequently needed, but extremely valuable, versatile and reliable adjunctive fixation method for use with uncemented acetabular components during complex revision THA associated with major bone deficiency. Smaller patients are more likely to require this approach as reaming away defects to allow insertion of a jumbo cup is more difficult with a smaller AP dimension to the acetabular columns and less local bone for implant support. Intermediate term durability and apparent radiographic incorporation has been very good despite the complex reconstructions originally required. This technique can allow the avoidance of structural bone grafting for even the most massive of bone defect problems, but additional followup is needed to see how durable these encouraging results are over the longer term


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 100 - 100
1 Nov 2016
Lewallen D
Full Access

Major bone loss involving the acetabulum can be seen during revision THA due to component loosening, migration or osteolysis and can also occur as a sequela of infected THA. Uncemented porous ingrowth components can be used for reconstruction of the vast majority of revision cases, where smaller segmental or cavitary defects are typically present. But when stable structural support on host bone is lacking, highly porous metal acetabular augments have been described as an alternative to large structural allograft, avoiding the potential for later graft resorption and the resulting loss of mechanical support that can follow. The fundamental concept behind these acetabular augments is the provision of critical additional fixation, structural support and increased contact area against host bone over the weeks following surgery while the desired ingrowth into porous implant surfaces is occurring. Three separate patterns of augment placement have been utilised in our practice since the development of these implants a decade ago: Type 1 – augment screwed onto the superolateral acetabular rim in a “flying buttress” configuration for treatment of a segmental rim defect, Type 2 – augment placed superiorly against host and then fixed (with cement) to the acetabular component adjacent to the cup to fill a mainly elliptical cavitary defect, and Type 3 – augment(s) placed medial to the cup to fill a protrusio type cavitary or combined cavitary segmental defect of the superomedial or medial wall, and allow peripheral cup placement against the still intact acetabular rim. In all cases the acetabular component and augment interface is fixed together with cement, with care to prevent any cement extrusion between any implant and the bone. When possible, we now prefer to place the acetabular component first and fix it provisionally with 2 or more screws, and then place the augments second as this is technically quicker and easier. This order of insertion is only possible though in type 1 and a few select type 2 cases. Type 3 cases always require placement of one or more augments first, before cup insertion. Supplemental cancellous bone graft is used routinely, but the need for structural bone is avoided. Highly porous metal acetabular augments are an infrequently needed, but extremely valuable, versatile and reliable adjunctive fixation method for use with uncemented acetabular components during complex revision THA associated with major bone deficiency. Smaller (often female) patients are more likely to require this approach as reaming away defects to allow insertion of a jumbo cup is more difficult in small patients with a smaller AP dimension to the acetabular columns and less local bone for implant support. Intermediate term durability and apparent radiographic incorporation has been very good despite the complex reconstructions originally required. This technique can allow the avoidance of structural bone grafting for even the most massive of bone defect problems, but additional followup is needed to see how durable these encouraging results are over the longer term


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 116 - 116
1 May 2019
Lewallen D
Full Access

The direct lateral (or anterolateral) approaches to the hip for revision THA involve detachment of the anterior aspect of the gluteus medius from the trochanter along with a contiguous sleeve of the vastus lateralis. Anterior retraction of this flap of gluteus medius and vastus lateralis and simultaneous posterior retraction of the femur creates an interval for division of gluteus minimus and deeper capsular tissues and exposure of the joint. To enhance reattachment of this flap of the anterior portion of the gluteus medius and vastus lateralis back to the trochanter, an oblique wafer of bone can be elevated along with the muscle off of the anterolateral portion of the trochanter. This bony wafer prevents suture pull out when large nonabsorbable sutures are used around or through the fragment and passed into the bone of the trochanteric bed for reattachment during closure. To prevent excessive splitting proximally into the gluteus medius muscle (and resulting damage to the superior gluteal nerve), it is often helpful to extend the muscle split further distally down into the vastus lateralis. This combined with careful elevation of the gluteal muscles off of the ilium (instead of splitting them) helps provide excellent and safe exposure of the entire rim of the acetabulum and access to the supracetabular region for bone grafting, acetabular augment placement and even fixation of the flanges of a cage. A simple method for posterior column plating via the anterolateral approach involves contouring of the distal end of the plate around the base of the ischium at the inferior edge of the socket. When an extended osteotomy of the femur is needed to correct deformity, remove a well-fixed implant or cement, the “extensile” variation of this same surgical approach involves a Wagner style (lateral to medial) osteotomy of the greater trochanter and proximal femur. The anterior portion of the femur after it is osteotomised is elevated as a separate segment while maintaining the soft tissue attachments to the bone as much as possible to aid osteotomy healing. After implant or cement removal, this approach gives excellent direct access to the distal femur for placement of a long stem revision femoral component without bone-implant conflict proximally because of the bow of the femur. The anterolateral approach (and extensile variants detailed above) can be used routinely and safely in the full range of revision THA procedures, or it can be employed selectively, if desired, in cases at increased risk for dislocation


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 30 - 30
1 Feb 2015
Perka C
Full Access

The endoprosthetic treatment of secondary osteoarthritis resulting from congenital hip dysplasia is difficult due to the small diameter of the acetabulum and the hypoplastic anterolateral bone stock. On the femoral side the increased femoral anteversion, insufficient femoral offset and proximal femoral deformities (mostly valgus deformities) as well as the small diameter and straight form of the intramedullary canal pose challenges. Careful preoperative planning is mandatory. The Crowe classification is usually used to describe these pathologies. In severe cases (Crowe 3 and especially Crowe 4) a shortening and derotating femoral osteotomy should be taken into account. Small acetabular components, acetabular augments, and modular femoral components must be available at all times. For acetabular fixation press-fit cups are preferred today, but excellent results were also described for threaded cups. The advantage of press-fit cups is the extensively documented and superior track record, but threaded cups allow for an easier reconstruction of the original hip center as well as slight medialization. As a result of medialization a reduction in polyethylene wear together with a low rate of loosening lead to very good long-term results in a younger patient population. Cementless straight stems are documented to be preferable for the small femoral diameter and the straight anatomic shape of the proximal femur. Nevertheless, the higher complication rate, especially the increased rate of nerve palsies, should be preoperatively discussed with the patient. The ideal bearing surface is currently unclear, ceramic-on-ceramic seems to be promising, although the longest data available support the use of metal-on-polyethylene


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 62 - 62
1 Jan 2016
Burns S Soler JA Cuffolo G Sharma A Kalairajah Y
Full Access

Introduction. Acetabular revision for cavitary defects in failed total hip replacement remains a challenge for the orthopaedic surgeon. Bone graft with cemented or uncemented revision is the primary solution; however, there are cases where structural defects are too large. Cup cage constructs have been successful in treating these defects but they do have their problems with early loosening and metalwork failure. Recently, highly porous cups that incorporate metal augments have been developed to achieve greater intra-operative stability showing encouraging results. Methods. Retrospective analysis of twenty-six consecutive acetabular revisions with Trabecular Titanium cups. Inclusion criteria included aseptic cases, adult patients, end-stage disease with signs of loosening, no trauma nor peri-prosthetic fractures. Data was obtained for patient demographics, Paprosky classification, use of bone graft, use of acetabular augment, and Moore index of osseointegration. Results. Twenty-six subjects were included in the study. Four patients were lost to follow up due to death. The average age was 73 (range 50–91) with 16 females and 10 males. The Paprosky classification was as follows: type I=7 (26.9%), type IIa=7 (26.9%), type IIb=4 (15.4%), type IIc=2 (7.7%), type IIIa=6 (23%). The Moore index at 6 months was as follows: type I=2 (7.7%), type II=4 (15.4%), type III=8 (30.1%), type IV= 6 (23%), type V=3 (11.5%), no data =3 (11.5). At 12 months: type I=0, type II=2 (7.7%), type III=5 (19.2%), type IV=7 (26.9%), type V=4 (15.4%), no data = 8 (4 no radiographs and 4 deceased). Augments were used in 8 patients. All cups implanted had supplemented screw fixation. Discussion. Revision acetabular surgery for aseptic loosening remains a challenge, particularly with cavitary defects. Success of surgery depends on solid fixation at the time of implantation and good, rapid osseointegration. With cavitary defects, stability of the implant becomes an issue, needing implants capable of filling the defects, with good porosity and enough surface roughness to achieve early stability. We found the Trabecular Titanium cup to have very high porosity and surface roughness allowing very good and stable fixation. The use of augments did not affect the initial stability of the implant. The Moore index of osseointegration reliably detects bony ingrowth of the cup of radiographic analysis by assessing (1) absence of radiolucent lines; (2) presence of a superolateral buttress; (3) medial stress-shielding; (4) radial trabeculae; and (5) an inferomedial buttress. Each sign had a high PPV for the presence of bone ingrowth. Ninety-seven percent of cups with three to five signs were ingrown, whereas 83% of cups with one or no signs were unstable. With three or more signs present, the PPV was 96.9%, the sensitivity was 89.6%, and specificity was 76.9%. In our study, 61.5% of patients had 3 signs or more and 69.2% of patients had 2 signs or more at 12 months. Conclusion. The Trabecular Titanium. TM. cup demonstrates good initial stability at implantation, and at twelve-months excellent osseointegration. These results are comparable to published results for similar trabecular cup designs. Further long-term studies are welcome and we continue to monitor this group of patients


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 219 - 219
1 Dec 2013
Kurdziel M Ackerman J Salisbury M Baker E Verner JJ
Full Access

Purpose:. Acetabular bone loss during revision total hip arthroplasty (THA) poses a challenge for reconstruction as segmental and extensive cavitary defects require structural support to achieve prosthesis stability. Trabecular metal (TM) acetabular augments structurally support hemispherical cups. Positive short-term results have been encouraging, but mid- to long-term results are largely unknown. The purpose of this study was to determine the continued efficacy of TM augments in THA revisions with significant pelvic bone loss. Methods:. Radiographs and medical records of 51 patients who had undergone THA revision with the use of a TM augment were retrospectively reviewed. Acetabular defects were graded according to the Paprosky classification of acetabular deficiencies based on preoperative radiographs and operative findings. Loosening was defined radiographically as a gross change in cup position, change in the abduction angle (>5°), or change in the vertical position of the acetabular component (>8 mm) between initial postoperative and most recent follow-up radiographs (Figure 1). Results:. Eleven patients had incomplete radiographic follow-up and were excluded. The study population included 17 men and 23 women, averaging 68.1 ± 14.1 years of age (range, 37–91), with average radiographic follow-up of 19.0 months (range, 2.4–97.4). Reasons for revision included osteolysis (n = 20, 38.5%), component loosening (n = 18, 15.4%), and periprosthetic fracture (n = 6, 11.5%). All patients underwent revision THA using a TM multi-hole revision acetabular cup and TM acetabular augment(s) to fill bony defects. Morcellized allograft was used in 9 patients. There were 33 Paprosky Type IIIA and seven Paprosky Type IIIB defects. One patient with Paprosky Type IIIB had catastrophic failure of the reconstructive construct three months postoperatively. The remaining 39 acetabular revisions demonstrated signs of bony ingrowth at the latest follow-up. There were no radiolucent lines suggestive of loosening, and no significant differences in abduction angle (p = 0.78), vertical distance between the superolateral edge of the cup and the trans-ischial reference line (p = 0.96), or the vertical distance between the center of the femoral head and trans-ischial reference line (p = 0.75) between the initial postoperative and most recent follow-up radiographs (Figure 2). Discussion and Conclusion:. Achieving fixation and long-term stability in THA revisions with segmental and/or cavitary bone loss is challenging. TM augments provide a modular structural system to achieve bony ingrowth, while avoiding large structural allografts, cages, and custom implants. At latest follow-up, 39 revision hips remained well-fixed with no evidence of loosening. One patient with a significant surgical history of infection, periprosthetic femur fracture, and 2 prior revision surgeries before acetabular reconstruction had an early clinical failure. Trabecular metal augments can be used for reconstruction of acetabular bone loss with good mid-term results. Continued follow-up is warranted for radiographic evaluation of bony integration and implant stability to determine long-term survivorship of these implants