Aims. The aim of this study was to assess whether supine flexibility predicts the likelihood of curve progression in patients with adolescent idiopathic scoliosis (AIS) undergoing brace treatment. Methods. This was a retrospective analysis of patients with
Abduction bracing is commonly used to treat developmental dysplasia of the hip (DDH) following closed reduction and spica casting, with little evidence to support or refute this practice. The purpose of this study was to determine the efficacy of abduction bracing after closed reduction in improving acetabular index (AI) and reducing secondary surgery for residual hip dysplasia. We performed a retrospective review of patients treated with closed reduction for DDH at a single tertiary referral centre. Demographic data were obtained including severity of dislocation based on the International Hip Dysplasia Institute (IHDI) classification, age at reduction, and casting duration. Patients were prescribed no abduction bracing, part-time, or full-time wear post-reduction and casting. AI measurements were obtained immediately upon cast removal and from two- and four-year follow-up radiographs.Aims
Methods
The standard approach of diagnosing and monitoring scoliosis involves using the Cobb angle from posteroanterior (PA) radiograph. This approach has two key limitations: 1) It involves exposing the patients to ionising radiation during a period of heightened radiosensitivity. 2) The 2D x-ray image is a projection image of a 3D deformity and the Cobb angle represents only lateral rotation. 3DUS would overcome both these limitations. We developed a 3DUS system by combining motion capture technology, a conventional 2D ultrasound scanner and bespoke software. An ex vivo experiment and a pilot clinical study were carried out to demonstrate the system's ability in identifying vertebrae landmarks and quantifying the curvature. For the ex vivo validation, a spine phantom was created by 3D-printing a segmented abdo-pelvis CT scan. The spine phantom was then scanned using 3DUS and the level of agreement in the dimensions measured using 3DUS and CT was assessed. An 11 year old female with adolescent idiopathic scoliosis (AIS) was scanned with 3DUS. The SP co-ordinates were projected on a plane of best-fit to compare the curvature angle from 3DUS with the Cobb angle from the x-ray image. The spinous (SP), transverse processes and the laminae demonstrated high echogenicity and were easily identifiable. The difference between the spine phantom inter-SP dimension measurements made in 3DUS and CT was <2.5%. The PA x-ray of the
We aimed to determine hip-related quality of life and clinical findings following treatment for neonatal hip instability (NHI) compared with age- and sex-matched controls. We hypothesized that NHI would predispose to hip discomfort in long-term follow-up. We invited those born between 1995 and 2001 who were treated for NHI at our hospital to participate in this population-based study. We included those that had Von Rosen-like splinting treatment started before one month of age. A total of 96 patients treated for NHI (75.6 %) were enrolled. A further 94 age- and sex-matched controls were also recruited. The Copenhagen Hip and Groin Outcome Score (HAGOS) questionnaire was completed separately for both hips, and a physical examination was performed.Aims
Methods
The accurate assessment of skeletal maturity
is essential in the management of orthopaedic conditions in the growing
child. In order to identify the time of peak height velocity (PHV)
in adolescents, two systems for assessing skeletal maturity have
been described recently; the calcaneal apophyseal ossification method
and the Sanders hand scores. The purpose of this study was to compare these methods in assessing
skeletal maturity relative to PHV. We studied the radiographs of
a historical group of 94 healthy children (49 females and 45 males),
who had been followed longitudinally between the ages of three and
18 years with serial radiographs and physical examination. Radiographs
of the foot and hand were undertaken in these children at least
annually between the ages of ten and 15 years. We reviewed 738 radiographs
of the foot and 694 radiographs of the hand. PHV was calculated
from measurements of height taken at the time of the radiographs. Prior to PHV we observed four of six stages of calcaneal apophyseal
ossification and two of eight Sanders stages. Calcaneal stage 3
and Sanders stage 2 was seen to occur about 0.9 years before PHV,
while calcaneal stage 4 and Sanders stage 3 occurred approximately
0.5 years after PHV. The stages of the calcaneal and Sanders systems can be used in
combination, offering better assessment of skeletal maturity with
respect to PHV than either system alone. Cite this article: