Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_21 | Pages 15 - 15
1 Dec 2017
Alam F Chami G Drew T
Full Access

MTPJ instability is very common yet there is no consensus of best surgical technique to repair it. The current techniques range from extensive release, K-wire fixation or plantar plate repair, which requires release of remaining intact plantar plate and all collaterals. Such varieties reflect a controversy regarding its aetiology. The aim of this study was to assess how much each structure contributes towards the stability of MTPJ and describing a simple technique designed by the senior author that can anatomically reconstruct all contributing structures to the pathology. Eleven cadaveric toes in two groups (five in group 1 and six in group 2) were included. Dorsal displacement (drawer test) was used to measure instability in an intact MTPJ followed by two different series of sequential sectioning of each part of collateral ligament (PCL and ACL) and part or complete plantar plate. Group 1 result showed that after incising PCL dorsal displacement was 0.51mm, PCL+ACL was 0.8mm and PCL+ACL+50% plantar plate was 2.39mm. Group 2 results showed that after incising 50% plantar plate dorsal displacement was 0.48mm, after full plantar plate 0.62mm, plantar plate +PCL was 0.74mm and plantar plate +PCL+ACL was 1.06mm. To produce significant instability, both collaterals on one side with combination of 50% plantar plate tear was needed. An isolated 50% tear of plantar plate caused less displacement of MTPJ compared to isolated collaterals. PCL contributed more towards the stability of MTPJ when the plantar plate was intact. Whereas, ACL contributed more stability when plantar plate was sectioned. The current practice of releasing the collaterals to gain access for repairing plantar plate by indirect method should be re-evaluated. A new technique of proximal tenotomy of extensor digitorum brevis tendon looped around the transverse ligament and attached to the neck of metatarsal reconstructs both structures (plantar plate and collaterals)


The Bone & Joint Journal
Vol. 102-B, Issue 2 | Pages 205 - 211
1 Feb 2020
Shao X Shi LL Bluman EM Wang S Xu X Chen X Wang J

Aims

To evaluate the donor site morbidity and tendon morphology after harvesting whole length, full-thickness peroneus longus tendon (PLT) proximal to the lateral malleolus for ligament reconstructions or tendon transfer.

Methods

A total of 21 eligible patients (mean age 34.0 years (standard deviation (SD) 11.2); mean follow-up period 31.8 months (SD 7.7), and 12 healthy controls (mean age, 26.8 years (SD 5.9) were included. For patients, clinical evaluation of the donor ankle was performed preoperatively and postoperatively. Square hop test, ankle strength assessment, and MRI of distal calf were assessed bilaterally in the final follow-up. The morphological symmetry of peroneal tendons bilaterally was evaluated by MRI in healthy controls.


The Bone & Joint Journal
Vol. 95-B, Issue 3 | Pages 290 - 294
1 Mar 2013
MacLeod K Lingham A Chatha H Lewis J Parkes A Grange S Smitham PJ

Clinicians are often asked by patients, “When can I drive again?” after lower limb injury or surgery. This question is difficult to answer in the absence of any guidelines. This review aims to collate the currently available evidence and discuss the factors that influence the decision to allow a patient to return to driving. Medline, Web of Science, Scopus, and EMBASE were searched using the following terms: ‘brake reaction time’, ‘brake response time’, ‘braking force’, ‘brake pedal force’, ‘resume driving’, ‘rate of application of force’, ‘driving after injury’, ‘joint replacement and driving’, and ‘fracture and driving’. Of the relevant literature identified, most studies used the brake reaction time and total brake time as the outcome measures. Varying recovery periods were proposed based on the type and severity of injury or surgery. Surveys of the Driver and Vehicle Licensing Agency, the Police, insurance companies in the United Kingdom and Orthopaedic Surgeons offered a variety of opinions.

There is currently insufficient evidence for any authoritative body to determine fitness to drive. The lack of guidance could result in patients being withheld from driving for longer than is necessary, or returning to driving while still unsafe.

Cite this article: Bone Joint J 2013;95-B:290–4.


The Bone & Joint Journal
Vol. 95-B, Issue 3 | Pages 305 - 313
1 Mar 2013
Ribbans WJ Collins M

The incidence of acute and chronic conditions of the tendo Achillis appear to be increasing. Causation is multifactorial but the role of inherited genetic elements and the influence of environmental factors altering gene expression are increasingly being recognised. Certain individuals’ tendons carry specific variations of genetic sequence that may make them more susceptible to injury. Alterations in the structure or relative amounts of the components of tendon and fine control of activity within the extracellular matrix affect the response of the tendon to loading with failure in certain cases.

This review summarises present knowledge of the influence of genetic patterns on the pathology of the tendo Achillis, with a focus on the possible biological mechanisms by which genetic factors are involved in the aetiology of tendon pathology. Finally, we assess potential future developments with both the opportunities and risks that they may carry.

Cite this article: Bone Joint J 2013;95-B:305–13.