Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 70 - 70
1 Oct 2020
Staats K Sosa BR Kuyl E Niu Y Suhardi VJ Turajane K Windhager R Greenblatt MB Ivashkiv L Bostrom MP Yang X
Full Access

Introduction. Initial post-operative implant instability leads to impaired osseointegration, one of the most common reasons for aseptic loosening and revision surgery. In this study, we developed a novel murine model of implant instability and demonstrated the anabolic effect of immediate and delayed intermittent Parathyroid Hormone (iPTH) treatment in the setting of instability-induced osseointegration failure. Methods. 3D-printed titanium implants were inserted in an oversized drill-hole in the tibia of C57Bl/6 mice (n=54). After implantation, the mice were randomly divided in 3 treatment groups (control: PBS-vehicle; iPTH; delayed iPTH). Radiographic analysis was performed to confirm signs of implant loosening. Peri-implant tissue formation was assessed through histology. Osseointegration was assessed through µCT and biomechanical pullout testing. Results. Immediate iPTH treatment reduced radiolucencies and induced a distinct pedestal sign distal to the implant stem (white arrow Fig 1A). The PBS treated mice had fibrous tissue implant encapsulation, whereas new mineralized tissue and no fibrous tissue was observed with immediate iPTH treatment (Fig 1E). Delayed iPTH treatment was also able to exhibit significant peri-implant bone mineralization, osteoblasts, angiogenesis, and a reduction of fibrous tissue (Fig 2A-B). iPTH treatment increased the force required to pull out the implant significantly from 8.41 ± 8.15N in the PBS group to 21.49 ± 10.45N and 23.68 ± 8.99N, in the immediate and delayed iPTH treatment groups, respectively (Fig 2D). PBS vehicle resulted in a bone volume/trabecular volume (BV/TV) of 0.23 ± 0.03, while immediate and delayed iPTH treatment increased BV/TV significantly to 0.46 ± 0.07 and 0.34 ± 0.10, respectively (Fig 2E). Conclusion. Immediate iPTH treatment prevents peri-implant fibrous tissue formation and enhances peri-implant bone formation in our murine model of mechanical instability. Delayed iPTH treatment was able to resolve the peri-implant fibrous tissue and stimulate bone formation. This study potentially addresses a leading cause of aseptic loosening by demonstrating that initial implant instability can be rescued by iPTH even with delayed start of treatment. For any figures or tables, please contact authors directly