Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 3 - 3
1 Dec 2020
Grupp TM Schilling C Fritz B Reyna ALP Pfaff A Taunt C Mihalko WM
Full Access

Introduction. Beneath infection, instability and malalignment, aseptic tibial component loosening remains a major cause of failure in total knee arthroplasty (TKA) [1]. This emphasizes the need for stable primary and long-term secondary fixation of tibial baseplates. To evaluate the primary stability of cemented tibial baseplates, different pre-clinical test methods have been undergone: finite element analysis [2], static push-out [3,4] or dynamic compression-shear loading [5] until interface failure. However, these test conditions do not reflect the long-term endurance under in vivo loading modes, where the tibial baseplate is predominantly subjected to compression and shear forces in a cyclic profile [5,6]. To distinguish between design parameters the aim of our study was to develop suitable pre-clinical test methods to evaluate the endurance of the implant-cement-bone interface fixation for tibial baseplates under severe anterior (method I) and internal-external torsional (method II) shear test conditions. Materials & Methods. To create a clinically relevant cement penetration pattern a 4. th. generation composite bone model was customised with a cancellous core (12.5 PCF cellular rigid PU foam) to enable for high cycle endurance testing. VEGA System. ®. PS & Columbus. ®. CRA/PSA ZrN-multilayer coated tibial baseplates (2×12) were implanted in the customised bone model using Palacos. ®. R HV bone cement (Figure 1). An anterior compression-shear test (method II) was conducted at 2500 N for 10 million cycles and continued at 3000 N & 3500 N for each 1 million cycles (total: 12 million cycles) simulating post-cam engagement at 45° flexion. An internal-external torsional shear test (method II) was executed in an exaggeration of clinically relevant rotations [7,8] with ±17.2° for 1 million cycles at 3000 N tibio-femoral load in extension. After endurance testing either under anterior shear or internal-external torsion each tibial baseplate was mounted into a testing frame and maximum push-out strength was determined [3]. Results. The cement penetration depth and characteristic pattern were comparable to 3D-CT scans of 24 cemented human tibiae from a previous study [5]. From the final push-out testing, no statistical significant differences could be found for anterior compression-shear testing (method I) with VEGA System. ®. PS (2674 ± 754 N) and Columbus. ®. CRA/PSA (2177 ± 429 N) (p = 0.191), as well as internal-external torsional shear testing (method II) between VEGA System. ®. PS (2561 ± 519 N) and Columbus. ®. CRA/PSA (2825 ± 515 N) tibial baseplates (p = 0.399). Discussion. The newly developed methods allow the evaluation of the endurance behaviour of the implant-cement-bone interface fixation for tibial baseplates in comparison to clinically long-term established knee systems, based on a combination of a suitable artificial bone model and severe anterior and internal-external torsional high cycle shear test conditions


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 100 - 100
1 Jan 2017
Navruzov T Rivière C Van Der Straeten C Harris S Cobb J Auvinet E Aframian A Iranpour F
Full Access

The accurate positioning of the total knee arthroplasty affects the survival of the implants(1). Alignment of the femoral component in relation to the native knee is best determined using pre- and post-operative 3D-CT reconstruction(2). Currently, the scans are visualised on separate displays. There is a high inter- and intra-observer variability in measurements of implant rotation and translation(3). Correct alignment is required to allow a direct comparison of the pre- and post-operative surfaces. This is prevented by the presence of the prostheses, the bone shape alteration around the implant, associated metal artefacts, and possibly a segmentation noise. The aim is to create a novel method to automatically register pre- and post-operative femora for the direct comparison of the implant and the native bone. The concept is to use post-operative femoral shaft segments free of metal noise and of surgical alteration for alignment with the pre-operative scan. It involves three steps. Firstly, using principal component analysis, the femoral shafts are re-oriented to match the X axis. Secondly, variants of the post-operative scan are created by subtracting 1mm increments from the distal femoral end. Thirdly, an iterative closest point algorithm is applied to align the variants with the pre-operative scan. For exploratory validation, this algorithm was applied to a mesh representing the distal half of a 3D scanned femur. The mesh of a prosthesis was blended with the femur to create a post-operative model. To simulate a realistic environment, segmentation and metal artefact noise were added. For segmentation noise, each femoral vertex was translated randomly within +−1mm,+−2mm,+−3mm along its normal vector. To create metal artefact random noise was added within 50 mm of the implant points in the planes orthogonal to the shaft. The alignment error was considered as the average distance between corresponding points which are identical in pre- and post-operative femora. These preliminary results obtained within a simulated environment show that by using only the native parts of the femur, the algorithm was able to automatically register the pre- and post-operative scans even in presence of the implant. Its application will allow visualisation of the scans on the same display for the direct comparison of the perioperative scans. This method requires further validation with more realistic noise models and with patient data. Future studies will have to determine if correct alignment has any effect on inter- and intra-observer variability