Aims. The morphology of medial malleolar fracture is highly variable and difficult to characterize without
Background. Talar neck fractures occur infrequently and are associated with high complication rates. Anatomical restoration of articular congruity is important. Adequate exposure and stable internal fixation of these fractures are challenging. Aims. We investigate the use of an anterior extensile approach for exposure of these fractures and their fixation by screws introduced through the talo-navicular articulation. We also compare the quality and quantity of exposure of the talar neck obtained by this approach with the commonly described combined medial/lateral approaches. Materials and Methods. An anterior approach to the talus between the tibialis anterior and the extensor hallucis longus tendons protecting both the superficial and deep peroneal nerves was performed on 5 fresh frozen cadaveric ankles . The surface area of talar neck accessible was measured using an Immersion Digital Microscibe and analysed with Rhinoceros 3D graphics package. Standard antero-medial and antero –lateral approaches were also carried out on the same ankles, and similar measurements taken. Seven patients with talar neck fractures (4 Hawkins Type II and 3 Hawkins Type III) who underwent operative fixation using this approach with parallel cannulated screws through the talo-navicular joint were followed and the clinical radiological outcomes were recorded. Results. 3D mapping demonstrated that talar surface area visible by the anterior approach (mean 1200sqmm) is consistently superior to that visible by either the medial or lateral approaches in isolation or in combination (mean medial 350sqmm, mean lateral 600sqmm). Medial malleolar osteotomy does not offer any additional visualisation of the talar neck.
The aim of this study was to compare the biomechanical stability and clinical outcome of external fixator combined with limited internal fixation (EFLIF) and open reduction and internal fixation (ORIF) in treating Sanders type 2 calcaneal fractures. Two types of fixation systems were selected for finite element analysis and a dual cohort study. Two fixation systems were simulated to fix the fracture in a finite element model. The relative displacement and stress distribution were analysed and compared. A total of 71 consecutive patients with closed Sanders type 2 calcaneal fractures were enrolled and divided into two groups according to the treatment to which they chose: the EFLIF group and the ORIF group. The radiological and clinical outcomes were evaluated and compared.Objectives
Methods
Neuropathic changes in the foot are common with
a prevalence of approximately 1%. The diagnosis of neuropathic arthropathy
is often delayed in diabetic patients with harmful consequences
including amputation. The appropriate diagnosis and treatment can
avoid an extensive programme of treatment with significant morbidity
for the patient, high costs and delayed surgery. The pathogenesis
of a Charcot foot involves repetitive micro-trauma in a foot with impaired
sensation and neurovascular changes caused by pathological innervation
of the blood vessels. In most cases, changes are due to a combination
of both pathophysiological factors. The Charcot foot is triggered
by a combination of mechanical, vascular and biological factors
which can lead to late diagnosis and incorrect treatment and eventually
to destruction of the foot. This review aims to raise awareness of the diagnosis of the Charcot
foot (diabetic neuropathic osteoarthropathy and the differential
diagnosis, erysipelas, peripheral arterial occlusive disease) and
describe the ways in which the diagnosis may be made. The clinical
diagnostic pathways based on different classifications are presented. Cite this article:
The objective of this study was to evaluate the rotation and
translation of each joint in the hindfoot and compare the load response
in healthy feet with that in stage II posterior tibial tendon dysfunction
(PTTD) flatfoot by analysing the reconstructive three-dimensional
(3D) computed tomography (CT) image data during simulated weight-bearing. CT scans of 15 healthy feet and 15 feet with stage II PTTD flatfoot
were taken first in a non-weight-bearing condition, followed by
a simulated full-body weight-bearing condition. The images of the
hindfoot bones were reconstructed into 3D models. The ‘twice registration’
method in three planes was used to calculate the position of the
talus relative to the calcaneus in the talocalcaneal joint, the
navicular relative to the talus in talonavicular joint, and the cuboid
relative to the calcaneus in the calcaneocuboid joint.Objective
Methods