Advertisement for orthosearch.org.uk
Results 1 - 14 of 14
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 31 - 31
1 Apr 2017
Meijer M Boerboom A Bulstra S Reininga I Stevens M
Full Access

Background

Achieving optimal prosthesis alignment during total knee arthroplasty (TKA) is essential. Imageless computer-assisted surgery (CAS) is developed to improve knee prosthesis alignment and with CAS it is possible to perform intraoperative alignment measurements. Lower limb alignment measurements are also performed for preoperative planning and postoperative evaluation. A new stereoradiography system, called EOS, can be used to perform these measurements in 3D and thus measurement errors due to malpositioning can be eliminated. Since both CAS and EOS are based on 3D modeling, measurements should theoretically correlate well. Therefore, objective was to compare intraoperative CAS-TKA measurements with pre- and postoperative EOS 3D measurements.

Methods

In a prospective study 56 CAS-TKAs were performed and alignment measurements were recorded two times: before bone cuts were made and after implantation of the prosthesis. Pre- and postoperative coronal alignment measurements were performed using EOS 3D. CAS measurements were compared with EOS 3D reconstructions. Measured angles were: varus/valgus (VV), mechanical lateral distal-femoral (mLDFA) and medial proximal tibial angle (mMPTA).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 140 - 140
1 Jan 2016
Lazennec JY Brusson A Rousseau M Clarke I Pour AE
Full Access

Introduction. Coronal misalignment of the lower limbs is closely related to the onset and progression of osteoarthritis. In cases of severe genu varus or valgus, evaluating this alignment can assist in choosing specific surgical strategies. Furthermore, restoring satisfactory alignment after total knee replacement promotes longevity of the implant and better functional results. Knee coronal alignment is typically evaluated with the Hip-Knee-Ankle (HKA) angle. It is generally measured on standing AP long-leg radiographs (LLR). However, patient positioning influences the accuracy of this 2D measurement. A new 3D method to measure coronal lower limb alignment using low-dose EOS images has recently been developed and validated. The goal of this study was to evaluate the relevance of this technique when determining knee coronal alignment in a referral population, and more specifically to evaluate how the HKA angle measured with this 3D method differs from conventional 2D methods. Materials and methods. 70 patients (140 lower extremities) were studied for 2D and 3D lower limb alignment measurements. Each patient received AP monoplane and biplane acquisition of their entire lower extremities on the EOS system according the classical protocols for LLR. For each patient, the HKA angle was measured on this AP X-ray with a 2D viewer. The biplane acquisition was used to perform stereoradiographic 3D modeling. Valgus angulation was considered positive, varus angulation negative. Student's T-test was used to determine if there was a bias in the HKA angle measurement between these two methods and to assess the effect of flexion/hyperextension, femoral rotation and tibial rotation on the 2D measurements. One operator did measurements 2 times. Results. The average total dose for both acquisitions was 0.75mGy (± 0.11mGy). The 2D and 3D measurements are reported in table 1. Intraoperator reliability was >0,99 for all measurements. In the whole series, 2D–3D HKA differences were >2° in 34% of cases, >3° in 22% of cases, >5° in 9% of cases and >10° in 3% of cases >10°. We compared 2D and 3D measurements according to the degree of flessum/recurvatum (> or <5° and > or <10°). The results are reported in table 2. The statistical analysis of parameters influencing 2D/3D measurements is reported in table 3. Discussion and conclusion. The HKA angle is typically assessed from 2D long-leg radiographs. However, several studies highlighted that 2D assessment of this angle may be affected by patient's positioning. Radtke showed that lower limb rotation during imaging significantly affected measurements of coronal plane knee alignment. Brouwer showed that axial rotation had an even greater effect on the apparent limb alignment on AP radiographs when the knee was flexed. This last finding is particularly relevant as many lower extremities present some amount of flexion or hyperextension, especially in aging subjects. This low dose biplanar EOS acquisitions provide a more accurate evaluation of coronal alignment compared to 2D, eliminating bias due to wrong knee positioning. This study points out the interest of EOS in outliers patients and opens new perspectives for preoperative planning and postoperative control of deformity correction or knee joint replacement


Bone & Joint Research
Vol. 10, Issue 10 | Pages 629 - 638
20 Oct 2021
Hayashi S Hashimoto S Kuroda Y Nakano N Matsumoto T Ishida K Shibanuma N Kuroda R

Aims. This study aimed to evaluate the accuracy of implant placement with robotic-arm assisted total hip arthroplasty (THA) in patients with developmental dysplasia of the hip (DDH). Methods. The study analyzed a consecutive series of 69 patients who underwent robotic-arm assisted THA between September 2018 and December 2019. Of these, 30 patients had DDH and were classified according to the Crowe type. Acetabular component alignment and 3D positions were measured using pre- and postoperative CT data. The absolute differences of cup alignment and 3D position were compared between DDH and non-DDH patients. Moreover, these differences were analyzed in relation to the severity of DDH. The discrepancy of leg length and combined offset compared with contralateral hip were measured. Results. The mean values of absolute differences (postoperative CT-preoperative plan) were 1.7° (standard deviation (SD) 2.0) (inclination) and 2.5° (SD 2.1°) (anteversion) in DDH patients, and no significant differences were found between non-DDH and DDH patients. The mean absolute differences for 3D cup position were 1.1 mm (SD 1.0) (coronal plane) and 1.2 mm (SD 2.1) (axial plane) in DDH patients, and no significant differences were found between two groups. No significant difference was found either in cup alignment between postoperative CT and navigation record after cup screws or in the severity of DDH. Excellent restoration of leg length and combined offset were achieved in both groups. Conclusion. We demonstrated that robotic-assisted THA may achieve precise cup positioning in DDH patients, and may be useful in those with severe DDH. Cite this article: Bone Joint Res 2021;10(10):629–638


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 102 - 108
1 Feb 2023
MacDessi SJ Oussedik S Abdel MP Victor J Pagnano MW Haddad FS

Orthopaedic surgeons are currently faced with an overwhelming number of choices surrounding total knee arthroplasty (TKA), not only with the latest technologies and prostheses, but also fundamental decisions on alignment philosophies. From ‘mechanical’ to ‘adjusted mechanical’ to ‘restricted kinematic’ to ‘unrestricted kinematic’ — and how constitutional alignment relates to these — there is potential for ambiguity when thinking about and discussing such concepts. This annotation summarizes the various alignment strategies currently employed in TKA. It provides a clear framework and consistent language that will assist surgeons to compare confidently and contrast the concepts, while also discussing the latest opinions about alignment in TKA. Finally, it provides suggestions for applying consistent nomenclature to future research, especially as we explore the implications of 3D alignment patterns on patient outcomes. Cite this article: Bone Joint J 2023;105-B(2):102–108


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 27 - 27
1 Jul 2020
Hurry J Spurway A Dunbar MJ El-Hawary R
Full Access

Radiostereometric analysis (RSA) allows for precise measurement of interbody distances on X-ray images, such as movement between a joint replacement implant and the bone. The low radiation biplanar EOS imager (EOS imaging, France) scans patients in a weight-bearing position, provides calibrated three-dimensional information on bony anatomy, and could limit the radiation during serial RSA studies. Following the ISO-16087 standard, 15 double exams were conducted to determine the RSA precision of total knee arthroplasty (TKA) patients in the EOS imager, compared to the standard instantaneous, cone-beam, uniplanar digital X-ray set-up. At a mean of 5 years post-surgery, 15 TKA participants (mean 67 years, 12 female, 3 male) were imaged twice in the biplanar imager. To reduce motion during the scan, a support for the foot was added and the scan speed was increased. The voltage was also increased compared to standard settings for better marker visibility over the implant. A small calibration object was included to remove any remaining sway in post-processing. The 95% confidence interval precision was 0.11, 0.04, and 0.15 mm in the x, y, and z planes, respectively and 0.15, 0.20, and 0.14° in Rx, Ry, and Rz. Two participants had motion artifacts successfully removed during post-processing using the small calibration object. With faster speeds and stabilization support, this study found an in vivo RSA precision of ≤ 0.15 mm and ≤ 0.20° for TKA exams, which is within published uniplanar values for arthroplasty RSA. The biplanar imager also adds the benefits of weight bearing imaging, 3D alignment measurements, a lower radiation dose, and does not require a reference object due to known system geometry and automatic image registration


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 37 - 37
1 Jul 2020
Lalone E Grewal R Seltser A Albakri K MacDermid J Suh N Perrin M
Full Access

Scaphoid fractures are a common injury accounting for more than 58% of all carpal bone fractures(1,2). Biomechanical studies have suggested that scaphoid mal-union may lead to altered carpal contact mechanics causing decreased motion, pain and arthritis(1,2). The severity of mal-union required to cause deleterious effects has yet to be established. This limits the ability to define surgical indications or impacts on prevention of posttraumatic arthritis. Computed tomography has been shown to be a useful in determining the 3D implications of altered bony alignment on the joint contact mechanics of surrounding joints. The objective of this study was to report mid-term follow-up image-based outcomes of patients with scaphoid mal-unions to determine the extent to which arthritic changes and decreased joint space is present after a minimum of 4 years following fracture. Participants (n=14) who had previously presented with a mal-united scaphoid fracture (indicated by a Height:Length Ratio >0.6) between November 2005 and November 2013 were identified and contacted. A short-arm thumb spica case was used to treat X patients and X required surgical management. Baseline and follow-up CT images, were performed with the wrist in radial deviation and positioned such that the long axis of the scaphoid was perpendicular to the axis of the scanner. Three-dimensional inter-bone distance (joint space), a measure of joint congruency and 3D alignment, was quantified from reconstructed CT bone models of the distal radius, scaphoid, lunate, capitate, trapezium and trapezoid from both the baseline and follow-up scans(3). Repeated measures ANOVA was used to detect differences in contact area (mm2) between baseline and follow-up CT's for the radioscaphoid, scaphocapitate and scaphotrapezium-trapezoid joint. The average age of participants was 43.1 years (16–64 years old). There was significant loss of joint space, indicated by a greater joint contact area 3–4 years post fracture, between baseline and follow-up reconstruction models, at the scaphocapitate (mean difference: 21.5±146mm2, p=0.007) and scaphotrapezoid joints (mean difference: 18.4 ±28.6mm2, 0.042). Significant differences in the measured contact area was not found for the radioscaphoid (0.153) and scaphotrapezium joints (0.72). Additionally, the scaphoid, qualitatively, appears to track in the vorsal direction in the majority of patients following fracture. Increased joint contact area in the scaphocapitate and scaphotrapezoid joint 3–4 years following fracture results from decreased 3D joint space and overall narrowing. Joint space narrowing, while not significantly different for all joints examined, was reduced for all joints surrounding the scaphoid. Decreased joint space and increased contact area detectable within this short interval might be suggestive of a trajectory for developing arthritis in the longer term, and illustrates the potential value of these measures for early detection. Longer term follow-up and correlation to clinical outcomes are needed to determine the importance of early joint space narrowing, and to identify those most at risk


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 17 - 17
1 Feb 2020
Hayashi S Hashimoto S Takayama K Matsumoto T Kuroda R
Full Access

Introduction. Several reports demonstrated the overcoverage of the anterior acetabulum. Anterior CE angle over 46°may be a probable risk factor for pincer FAI syndrome after a rotational acetabular osteotomy. In addition, a highly anteverted femoral neck, reported as a risk factor for posterior impingement, has been found in DDH patients. These findings indicate proper acetabular reorientation is essential to avoid anterior or posterior impingement after periacetabular osteotomy (PAO). The aim of this study was to evaluate the relationship between acetabular three-dimensional (3D) alignment reorientation and clinical range of motion (ROM) after periacetabular osteotomy (PAO). Methods. A total of 53 patients who underwent curved PAO (CPO) for DDH from January 2014 to April 2017 were selected. Three (5.7%) of them were lost to follow-up. Therefore, the data from 58 hips, contributed by 50 patients (44 women and 6 men), were included in the analysis. Pre- and postoperative computed tomography (CT) scans from the pelvis to the knee joint were performed and transferred to a 3D template software (Zed Hip; Lexi, Tokyo, Japan). The pelvic plane axis was defined according to the functional pelvic plane. The pre- and postoperative lateral and anterior 3D center-edge (CE) angles were measured on the coronal and sagittal views through the center of the femoral head. The pre- and postoperative 3D center-edge (CE) angles and femoral anteversion were measured and compared with clinical outcomes, including postoperative ROM. Results. The radiographical outcomes of our study are demonstrated in Figure 1. The mean values of pre- and postoperative lateral CE angles were 12.6º±8.7 and 30.2º±9.7, respectively (p<0.001), and mean pre- and postoperative anterior CE angles were 42.4º±15.3 and 63.9º±12.1, respectively (p<0.001). Both CE angles were significantly improved. The correlation between pre- and postoperative acetabular coverage and postoperative ROM was evaluated. Postoperative abduction and internal rotation ROM were significantly associated with postoperative lateral CE angles (abduction; p < 0.001, internal rotation; p = 0.028); flexion and internal rotation ROM was significantly associated with postoperative anterior CE angles (flexion; p < 0.001, internal rotation; p = 0.028). Femoral anteversion was negatively correlated with postoperative abduction (p = 0.017) and external rotation (p = 0.047) ROM (Table 1). Postoperative abduction ROM was strongly positively correlated with femoral anteversion, whereas postoperative external rotation was strongly negatively correlated (Table 2). The total anteversion was strongly correlated with pre- or postoperative ROMs during flexion and internal rotation ROM (Table 2). Conclusion. Postoperativeanterior acetabular coverage may affect internal rotation ROM more than the lateral coverage. Therefore, the direction of acetabular reorientation should be carefully determined according to 3D alignment during PAO. For any figures or tables, please contact the authors directly


Bone & Joint Open
Vol. 5, Issue 9 | Pages 758 - 765
12 Sep 2024
Gardner J Roman ER Bhimani R Mashni SJ Whitaker JE Smith LS Swiergosz A Malkani AL

Aims

Patient dissatisfaction following primary total knee arthroplasty (TKA) with manual jig-based instruments has been reported to be as high as 30%. Robotic-assisted total knee arthroplasty (RA-TKA) has been increasingly used in an effort to improve patient outcomes, however there is a paucity of literature examining patient satisfaction after RA-TKA. This study aims to identify the incidence of patients who were not satisfied following RA-TKA and to determine factors associated with higher levels of dissatisfaction.

Methods

This was a retrospective review of 674 patients who underwent primary TKA between October 2016 and September 2020 with a minimum two-year follow-up. A five-point Likert satisfaction score was used to place patients into two groups: Group A were those who were very dissatisfied, dissatisfied, or neutral (Likert score 1 to 3) and Group B were those who were satisfied or very satisfied (Likert score 4 to 5). Patient demographic data, as well as preoperative and postoperative patient-reported outcome measures, were compared between groups.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 59 - 59
1 Feb 2020
Zhang J Bhowmik-Stoker M Yanoso-Scholl L Condrey C Marchand K Marchand R
Full Access

Introduction. Valgus deformity in an end stage osteoarthritic knee can be difficult to correct with no clear consensus on case management. Dependent on if the joint can be reduced and the degree of medial laxity or distension, a surgeon must use their discretion on the correct method for adequate lateral releases. Robotic assisted (RA) technology has been shown to have three dimensional (3D) cut accuracy which could assist with addressing these complex cases. The purpose of this work was to determine the number of soft tissue releases and component orientation of valgus cases performed with RA total knee arthroplasty (TKA). Methods. This study was a retrospective chart review of 72 RATKA cases with valgus deformity pre-operatively performed by a single surgeon from July 2016 to December 2017. Initial and final 3D component alignment, knee balancing gaps, component size, and full or partial releases were collected intraoperatively. Post-operatively, radiographs, adverse events, WOMAC total and KOOS Jr scores were collected at 6 months, 1 year and 2 year post-operatively. Results. Pre-operatively, knee deformities ranged from reducible knees with less than 5mm of medial laxity to up to 12° with fixed flexion contracture. All knees were corrected within 2.5 degrees of mechanical neutral. Average femoral component position was 0.26. o. valgus, and 4.07. o. flexion. Average tibial component position was 0.37. o. valgus, and 2.96. o. slope, where all tibial components were placed in a neutral or valgus orientation. Flexion and extension gaps were within 2mm (mean 1mm) for all knees. Medial and lateral gaps were balanced 100% in extension and 93% in flexion. The average flexion gap was 18.3mm and the average extension gap was 18.7mm. For component size prediction, the surgeon achieved their planned within one size on the femur 93.8% and tibia 100% of the time. The surgeon upsized the femur in 6.2% of cases. Soft tissue releases were reported in one of the cases. At latest follow-up, radiographic evidence suggested well seated and well fixed components. Radiographs also indicated the patella components were tracking well within the trochlear groove. No revision and re-operation is reported. Mean WOMAC total scores were improved from 24±8.3 pre-op to 6.6±4.4 2-year post-op (p<0.01). Mean KOOS scores were improved from 46.8±9.7 pre-op to 88.4±13.5 2-year post-op (p<0.01). Discussion. In this retrospective case review, the surgeon was able to balance the knee with bone resections and avoid disturbing the soft tissue envelope in valgus knees with 1–12° of deformity. To achieve this balance, the femoral component was often adjusted in axial and valgus rotations. This allowed the surgeon to open lateral flexion and extension gaps. While this study has several limitations, RATKA for valgus knees should continue to be investigated. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIX | Pages 44 - 44
1 Jul 2012
Blyth M Jones B Smith J Rowe P
Full Access

Recent advancements in optical navigated TKA have shown improved overall limb alignment, implant placement and reduced outliers compared to conventional TKA. This study represents the first RCT comparing EM navigation and conventional TKA. 3D alignment was analysed from CT scans. Clinical scores (Oxford Knee Score (OKS) and American Knee Society Score (AKSS)) were recorded at pre-op, 3 and 12 months post-op. Data presented includes 180 patients (n=90 per group) at 3 months and 140 (n=70 per group) at 12 months. The groups had similar mean mechanical axis alignments (EM 0.31° valgus; conventional 0.15° valgus). Mechanical axis alignment however was improved in the EM group with 92% within +/−3° of neutral compared to 84% of the conventional group (p=0.90). The EM group showed improved coronal and sagittal femoral alignment and improved coronal, sagittal and rotational tibial alignment, which was significant for sagittal femoral alignment (p=0.04). The OKS and AKSS scores were significantly better for the EM group at 3 months post-op (OKS p=0.02, AKSS p=0.04), but there was no difference between groups at 12 months. The mean pre-op range of motion (ROM) for both groups was 105°. This decreased at 3 months to 102° in the EM group and 99° in the conventional group, but there was a significant improvement by 12 months: EM=113° (p=0.012) and conventional=112° (p=0.026). ROM was statistically similar between groups at all assessment phases. Knee alignment was better restored following EM navigated TKA relative to conventional TKA, but the difference was not significant. The EM group showed greater clinical improvements at early follow-up; however this difference was not sustained at 12 months. ROM was seen to decrease at 3 months but then significantly improve by 12 month post-op. Proving cost-effectiveness for navigation systems in TKA remains a challenge


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 329 - 337
1 Feb 2021
MacDessi SJ Griffiths-Jones W Harris IA Bellemans J Chen DB

Aims

A comprehensive classification for coronal lower limb alignment with predictive capabilities for knee balance would be beneficial in total knee arthroplasty (TKA). This paper describes the Coronal Plane Alignment of the Knee (CPAK) classification and examines its utility in preoperative soft tissue balance prediction, comparing kinematic alignment (KA) to mechanical alignment (MA).

Methods

A radiological analysis of 500 healthy and 500 osteoarthritic (OA) knees was used to assess the applicability of the CPAK classification. CPAK comprises nine phenotypes based on the arithmetic HKA (aHKA) that estimates constitutional limb alignment and joint line obliquity (JLO). Intraoperative balance was compared within each phenotype in a cohort of 138 computer-assisted TKAs randomized to KA or MA. Primary outcomes included descriptive analyses of healthy and OA groups per CPAK type, and comparison of balance at 10° of flexion within each type. Secondary outcomes assessed balance at 45° and 90° and bone recuts required to achieve final knee balance within each CPAK type.


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1359 - 1367
3 Oct 2020
Hasegawa K Okamoto M Hatsushikano S Watanabe K Ohashi M Vital J Dubousset J

Aims

The aim of this study is to test the hypothesis that three grades of sagittal compensation for standing posture (normal, compensated, and decompensated) correlate with health-related quality of life measurements (HRQOL).

Methods

A total of 50 healthy volunteers (normal), 100 patients with single-level lumbar degenerative spondylolisthesis (LDS), and 70 patients with adult to elderly spinal deformity (deformity) were enrolled. Following collection of demographic data and HRQOL measured by the Scoliosis Research Society-22r (SRS-22r), radiological measurement by the biplanar slot-scanning full body stereoradiography (EOS) system was performed simultaneously with force-plate measurements to obtain whole body sagittal alignment parameters. These parameters included the offset between the centre of the acoustic meatus and the gravity line (CAM-GL), saggital vertical axis (SVA), T1 pelvic angle (TPA), McGregor slope, C2-7 lordosis, thoracic kyphosis (TK), lumbar lordosis (LL), pelvic incidence (PI), PI-LL, sacral slope (SS), pelvic tilt (PT), and knee flexion. Whole spine MRI examination was also performed. Cluster analysis of the SRS-22r scores in the pooled data was performed to classify the subjects into three groups according to the HRQOL, and alignment parameters were then compared among the three cluster groups.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IX | Pages 76 - 76
1 Mar 2012
Iranpour F Konala P Cobb JP Friederich N Hirschmann MT
Full Access

Introduction. SPECT/CT might be a promising diagnostic modality in patients with painful total knee arthroplasty. It was the purpose of our study to introduce a novel standardised SPECT/CT algorithm for assessing patients with painful primary total knee arthroplasty and to evaluate its clinical applicability and inter- and intra-observer variation and reliability. Methods. A novel SPECT/CT localisation scheme, which consists of 9 tibial, 9 femoral and 4 patellar regions on standardised transverse, coronal, and sagittal slices was introduced. It was assessed in 18 consecutive patients with painful knees after total knee arthroplasty. The localisation and level of the tracer uptake on SPECT/CT were noted using a color coded 10 steps graded scale (0-100). The inter and intra-observer reliability were assessed. The femoral and tibial prosthetic component position was assessed in the CT images after 3D reconstruction and aligning them to standardised frames of reference. The average root mean square difference±standard deviations and ranges of these measured angles are presented along with the intraclass correlation coefficients for inter- and intraobserver reliability. Results. The localisation scheme was useful and easily applicable in all 18 cases. The novel classification using the SPECT/CT for the femoral, the tibial and patellar region was reliable. The measurements of component position in SPECT/CT images were highly reliable and feasible in all cases with sufficient visibility of the landmarks. The mean intra-observer difference between the rotational alignment measurements of tibial and femoral components was less than 2° (2SD 1°). The intra-observer variability for these measurements was less than 1 degree (2SD 1°). Conclusions. The introduced algorithm using SPECT/CT in patients after total knee arthroplasty, which combines mechanical (assessment of 3D rotational alignment of the prosthesis in the inherent CT data) and metabolic data (SPECT/CT localisation scheme), was highly reliable and useful. We propose its use in larger scaled clinical studies to investigate its clinical value


The Bone & Joint Journal
Vol. 101-B, Issue 11 | Pages 1348 - 1355
1 Nov 2019
Gascoyne T Parashin S Teeter M Bohm E Laende E Dunbar M Turgeon T

Aims

A retrospective study was conducted to measure short-term in vivo linear and volumetric wear of polyethylene (PE) inserts in 101 total knee arthroplasty (TKA) patients using model-based radiostereometric analysis (MBRSA).

Patients and Methods

Nonweightbearing supine RSA exams were performed postoperatively and at six, 12, and 24 months. Weightbearing standing RSA exams were performed on select patients at 12 and 24 months. Wear was measured both linearly (joint space) and volumetrically (digital model overlap) at each available follow-up. Precision of both methods was assessed by comparing double RSA exams. Patient age, sex, body mass index, and Oxford Knee Scores were analyzed for any association with PE wear.