Advertisement for orthosearch.org.uk
Results 1 - 20 of 340
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 193 - 193
1 Dec 2013
Walker P Meere P Bell C
Full Access

The purpose of balancing in total knee surgery is to achieve smooth tracking of the knee over a full range of flexion without excessive looseness or tightness on either the lateral or medial sides. Balancing is controlled by the alignment of the bone cuts, the soft tissue envelope, and the constraint of the total knee. Recently, Instrumented Tibial Trials (OrthoSensor) which measure and display the location and magnitude of the forces on the lateral and medial condyles, have been introduced, offering the possibly of predictive and quantitative balancing. This paper presents the results of experiments on 10 lower limb specimens, where the effects of altering the bone cuts or the femoral component size were measured. A special leg mounting rig was fixed to a standard operating table. A boot was strapped to the foot, and the boot tracked along a horizontal rail to allow flexion-extension. The initial bone cuts were carried out by measured resection using a navigation system. The trial femoral component and the instrumented tibial trial were inserted, and the following tests carried out:. Sag Test; foot lifted up, the trial thickness chosen to produce zero flexion. Heel Push Test; heel moved towards body to maximum flexion. Varus-Valgus Test, AP and IXR Tests were also carried out, but not discussed here. For an initial state of the knee, close to balanced, the lateral and medial contact forces were recorded for the full flexion range. The mean value of the contact forces per condyle was 77.4N, the mean in early flexion (0–60 deg) was 94.2N, and the mean in late flexion (60–120 deg) was 55.7N. The difference was due to the effect of the weight of the leg. One of the following Surgical Variables was then implemented, and the contact forces again recorded. . 1. Distal femoral cut; 2 mm resection (2 mm increase in insert thickness to preserve extension). 2. Tibial frontal varus, 2 mm lateral stuffing. 3. Tibial frontal valgus, 2 mm medial stuffing. 4. Tibial slope angle increase (5 deg baseline); +2 degrees. 5. Tibial slope angle decrease (5 deg baseline); −2 degrees. 6. Increase in AP size of femoral component (3 mm). The differences between the condyle force readings before and after the Surgical Variable were calculated for low and high angular ranges. The mean values for the 10 knees of the differences of the above Surgical Variables from the initial balanced state are shown in the chart. From literature data, the mean tension increase in one collateral ligament is close to 25N/mm up to the toe of the load-elongation graph, and 50N/mm after the toe. Hence in the initial balanced state, the collateral ligaments were elongated by 2–4 mm producing pretension. From the Surgical Variables data, up to 2 mm/2 deg change in bone cuts (or 3 mm femcom change), and collateral ligament releases up to 2 mm, would correct from any unbalanced state to a balanced state. This data provides useful guidelines for the use of the Instrumented Tibial Trials at surgery, in terms of bone cut adjustments and ligament releases


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 66 - 66
1 Dec 2022
Martin R Matovinovic K Schneider P
Full Access

Ligament reconstruction following multi-ligamentous knee injuries involves graft fixation in bone tunnels using interference screws (IS) or cortical suspensory systems. Risks of IS fixation include graft laceration, cortical fractures, prominent hardware, and inability to adjust tensioning once secured. Closed loop suspensory (CLS) fixation offers an alternative with fewer graft failures and improved graft-to-tunnel incorporation. However, graft tensioning cannot be modified to accommodate errors in tunnel length evaluation. Adjustable loop suspensory (ALS) devices (i.e., Smith & Nephew Ultrabutton) address these concerns and also offer the ability to sequentially tighten each graft, as needed. However, ALS devices may lead to increased graft displacement compared to CLS devices. Therefore, this study aims to report outcomes in a large clinical cohort of patients using both IS and CLS fixation. A retrospective review of radiographic, clinical, and patient-reported outcomes following ligament reconstruction from a Level 1 trauma centre was completed. Eligible patients were identified via electronic medical records using ICD-10 codes. Inclusion criteria were patients 18 years or older undergoing ACL, PCL, MCL, and/or LCL reconstruction between January 2018 and 2020 using IS and/or CLS fixation, with a minimum of six-month post-operative follow-up. Exclusion criteria were follow-up less than six months, incomplete radiographic imaging, and age less than 18 years. Knee dislocations (KD) were classified using the Schenck Classification. The primary outcome measure was implant removal rate. Secondary outcomes were revision surgery rate, deep infection rate, radiographic fixation failure rate, radiographic malposition, Lysholm and Tegner scores, clinical graft failure, and radiographic graft failure. Radiographic malposition was defined as implants over 5 mm off bone or intraosseous deployment of the suspensory fixation device. Clinical graft failure was defined as a grade II or greater Lachman, posterior drawer, varus opening at 20° of knee flexion, and/or valgus opening at 20° of knee flexion. Radiographic failure was defined when over 5 mm, 3.2 mm, and/or 2.7 mm of side-to-side difference occurred using PCL gravity stress views, valgus stress views, and/or varus stress views, respectively. Descriptive statistics were used. Sixty-three consecutive patients (mean age = 41 years, range = 19-58) were included. A total of 266 CLS fixation with Ultrabuttons and 135 IS were used. Mean follow-up duration was 383 days. Most injuries were KD type II and III. Graft revision surgery rate was 1.5%. Intraosseous deployment occurred in 6.2% and 17% had implants secured in soft tissue, rather than on bone. However, the implant removal rate was only 6.2%. Radiographic PCL gravity stress views demonstrated an average of 1.2 mm of side-to-side difference with 6.2% meeting criteria for radiographic failure. A single patient met radiographic failure criteria for collateral grafts. Mean Lysholm and Tegner scores were 87.3 and 4.4, respectively, with follow-up beyond one year. Both IS and CLS fixation demonstrate an extremely low revision surgery rate, a high rate of implant retention, excellent radiographic stability, and satisfactory patient-reported outcome scores. Incorrect implant deployment was seen in a total of 17% of patients, yet none required implant removal. A single patient required graft revision due to implant failure


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 57 - 57
1 Feb 2021
Elmasry S Chalmers B Sculco P Kahlenberg C Mayman D Wright T Westrich G Cross M Imhauser C
Full Access

Introduction. Surgeons commonly resect additional distal femur during primary total knee arthroplasty (TKA) to correct a flexion contracture to restore range of motion and knee function. However, the effect of joint line elevation on the resulting TKA kinematics including frontal plane laxity is unclear. Thus, our goal was to quantify the effect of additional distal femoral resection on passive extension and mid-flexion laxity. Methods. Six computational knee models with capsular and collateral ligament properties specific to TKA were developed and implanted with a contemporary posterior-stabilized TKA. A 10° flexion contracture was modeled by imposing capsular contracture as determined by simulating a common clinical exam of knee extension and accounting for the length and weight of each limb segment from which the models were derived (Figure 1). Distal femoral resections of 2 mm and 4 mm were simulated for each model. The knees were then extended by applying the measured knee moments to quantify the amount of knee extension. The output data were compared with a previous cadaveric study using a two-sample two-tailed t-test (p<0.05) [1]. Subsequently, varus and valgus torques of ±10 Nm were applied as the knee was flexed from 0° to 90° at the baseline, and after distal resections of 2 mm, and 4 mm. Coronal laxity, defined as the sum of varus and valgus angulation in response to the applied varus and valgus torques, was measured at 30° and 45°of flexion, and the flexion angle was identified where the increase in laxity was the greatest with respect to baseline. Results. With 2 mm and 4 mm of distal femoral resection, the knee extended an additional 4°±0.5° and 8°±0.75°, respectively (Figure 2). No significant difference was found between the extension angle predicted by the six models and the results of the cadaveric study after 2 mm (p= 0.71) and 4 mm (p= 0.47). At 2 mm resection, mean coronal laxity increased by 3.1° and 2.7° at 30° and 45°of flexion, respectively. At 4 mm resection, mean coronal laxity increased by 6.5° and 5.5° at 30° and 45° of flexion, respectively (Figures 3a and 3b). The flexion angle corresponding to the greatest increase in coronal laxity for 2 mm of distal resection occurred at 22±7° of flexion with a mean increase in laxity of 4.0° from baseline. For 4 mm distal resection, the greatest increase in coronal laxity occurred at 16±6° of flexion with a mean increase in laxity of 7.8° from baseline. Conclusion. A TKA computational model representing a knee with preoperative flexion contracture was developed and corroborated measures from a previous cadaveric study [1]. While additional distal femoral resection in primary TKA increases passive knee extension, the consequent joint line elevation induced up to 8° of additional coronal laxity in mid-flexion. This additional midflexion laxity could contribute to midflexion instability; a condition that may require TKA revision surgery. Further studies are warranted to understand the relationship between joint line elevation, midflexion laxity, and instability. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 38 - 38
23 Feb 2023
Ernstbrunner L Almond M Rupasinghe H Jo O Zbeda R Ackland D Ek E
Full Access

The extracortical single-button (SB) inlay repair is one of the most preferred distal biceps tendon repair techniques. However, specific complications such as neurovascular injury and non-anatomic repairs have led to the development of techniques that utilize intracortical double-button (DB) fixation. To compare the biomechanical stability of the extracortical SB repair with the anatomical DB repair technique. Controlled laboratory study. The distal biceps tendon was transected in 18 cadaveric elbows from 9 donors. One elbow of each donor was randomly assigned to the extracortical SBor anatomical DB group. Both groups were cyclically loaded with 60N over 1000 cycles between 90° of flexion and full extension. The elbow was then fixed in 90° of flexion and the repair construct loaded to failure. Gap-formation and construct stiffness during cyclic loading, and ultimate load to failure was analysed. After 1000 cycles, the anatomical DB technique compared with the extracortical SB technique showed significantly less gap-formation (mean difference 1.2 mm; p=0.017) and significantly more construct stiffness (mean difference 31 N/mm; p=0.023). Ultimate load to failure was not significantly different comparing both groups (SB, 277 N ±92 vs. DB, 285 N ±135; p=0.859). The failure mode in the anatomical DB group was significantly different compared with the extracortical SB technique (p=0.002) and was due to fracture avulsion of the BicepsButton in 7 out of 9 specimens (vs. none in SB group). Our study shows that the intracortical DB technique produces equivalent or superior biomechanical performance to the SB technique. The DB repair technique reduces the risk of nerve injury and better restores the anatomical footprint of biceps tendon. The DB technique may offer a clinically viable alternative to the SB repair technique


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 16 - 16
24 Nov 2023
Siverino C Gens L Ernst M Buchholz T Windolf M Richards G Zeiter S Moriarty F
Full Access

Aim. Debridement, Antibiotics, Irrigation, and implant Retention (DAIR) is a surgical treatment protocol suitable for some patients with fracture related infection (FRI). Clinically relevant pre-clinical models of DAIR are scarce and none have been developed in large animals. Therefore, this project aimed to develop a large animal model for FRI including a DAIR approach and compare outcomes after 2 or 5 weeks of infection. Method. Swiss Alpine sheep (n=8), (2–6 years, 50–80 kg) were included in this study. This study was approved by cantonal Ethical authorities in Chur, Switzerland. A 2 mm osteotomy was created in the tibia and fixed with a 10-hole 5.5 mm steel plate. Subsequently, 2.5 mL of saline solution containing 10. 6. CFU/mL of Staphylococcus aureus MSSA (ATCC 25923) was added over the plate. Sheep were observed for 2 (n=3) or 5 weeks (n=5) until revision surgery, during which visibly infected or necrotic tissues were removed, and the wound flushed with saline. All samples were collected for bacterial quantification. After revision surgery, the sheep were treated systemically for 2 weeks with flucloxacillin and for 4 weeks with rifampicin and cotrimoxazole. After 2 further weeks off antibiotics, the animals were euthanized. Bacteriological culture was performed at the end of the study. Bone cores were isolated from the osteotomy site and processed for Giemsa & Eosin and Brown and Brenn staining. A radiographical examination was performed every second week. Results. Bacteriological evaluation of the retrieved samples during revision surgery showed no significant difference between the 2 vs 5 weeks infection periods in term of total CFU counts. At the end of the study, radiographical examination showed callus formation over the osteotomy site in both groups, although the osteotomy was not completely healed in either group. At euthanasia, the 2 weeks infection group showed a higher soft tissue burden compared to the 5 weeks group, whereby the infection in the 5 weeks group was primarily located in the bone and bone marrow. Conclusions. The large animal model of FRI and DAIR was successfully established. Bacteriological outcomes highlight that the increasing duration of the infection does not change the outcome but the location of the infection from a predominantly soft tissue infection to a deeper bone and intramedullary (IM) channel infection. The debridement of the IM channel could potentially reduce the infection burden by eliminating those bacteria not easily reached by systemic antibiotics, though is not practical using conventional techniques


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 105 - 105
1 Dec 2022
Hébert S Charest-Morin R Bédard L Pelet S
Full Access

Despite the current trend favoring surgical treatment of displaced intra-articular calcaneal fractures (DIACFs), studies have not been able to demonstrate superior functional outcomes when compared to non-operative treatment. These fractures are notoriously difficult to reduce. Studies investigating surgical fixation often lack information about the quality of reduction even though it may play an important role in the success of this procedure. We wanted to establish if, amongst surgically treated DIACF, an anatomic reduction led to improved functional outcomes at 12 months. From July 2011 to December 2020, at a level I trauma center, 84 patients with an isolated DIACF scheduled for surgical fixation with plate and screws using a lateral extensile approach were enrolled in this prospective cohort study and followed over a 12-month period. Post-operative computed tomography (CT) imaging of bilateral feet was obtained to assess surgical reduction using a combination of pre-determined parameters: Böhler's angle, calcaneal height, congruence and articular step-off of the posterior facet and calcaneocuboid (CC) joint. Reduction was judged anatomic when Böhler's angle and calcaneal height were within 20% of the contralateral foot while the posterior facet and CC joint had to be congruent with a step-off less than 2 mm. Several functional scores related to foot and ankle pathology were used to evaluate functional outcomes (American Orthopedic Foot and Ankle Score - AOFAS, Lower Extremity Functional Score - LEFS, Olerud and Molander Ankle Score - OMAS, Calcaneal Functional Scoring System - CFSS, Visual Analog Scale for pain - VAS) and were compared between anatomic and nonanatomic DIAFCs using Student's t-test. Demographic data and information about injury severity were collected for each patient. Among the 84 enrolled patients, 6 were excluded while 11 were lost to follow-up. Thirty-nine patients had a nonanatomic reduction while 35 patients had an anatomic reduction (47%). Baseline characteristics were similar in both groups. When we compared the injury severity as defined by the Sanders’ Classification, we did not find a significant difference. In other words, the nonanatomic group did not have a greater proportion of complex fractures. Anatomically reduced DIACFs showed significantly superior results at 12 months for all but one scoring system (mean difference at 12 months: AOFAS 3.97, p = 0.12; LEFS 7.46, p = 0.003; OMAS 13.6, p = 0.002, CFSS 7.5, p = 0.037; VAS −1.53, p = 0.005). Univariate analyses did not show that smoking status, worker's compensation or body mass index were associated with functional outcomes. Moreover, fracture severity could not predict functional outcomes at 12 months. This study showed superior functional outcomes in patients with a DIACF when an anatomic reduction is achieved regardless of the injury severity


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 70 - 70
1 Dec 2022
Hébert S Charest-Morin R Bédard L Pelet S
Full Access

Despite the current trend favoring surgical treatment of displaced intra-articular calcaneal fractures (DIACFs), studies have not been able to demonstrate superior functional outcomes when compared to non-operative treatment. These fractures are notoriously difficult to reduce. Studies investigating surgical fixation often lack information about the quality of reduction even though it may play an important role in the success of this procedure. We wanted to establish if, amongst surgically treated DIACF, an anatomic reduction led to improved functional outcomes at 12 months. From July 2011 to December 2020, at a level I trauma center, 84 patients with an isolated DIACF scheduled for surgical fixation with plate and screws using a lateral extensile approach were enrolled in this prospective cohort study and followed over a 12-month period. Post-operative computed tomography (CT) imaging of bilateral feet was obtained to assess surgical reduction using a combination of pre-determined parameters: Böhler's angle, calcaneal height, congruence and articular step-off of the posterior facet and calcaneocuboid (CC) joint. Reduction was judged anatomic when Böhler's angle and calcaneal height were within 20% of the contralateral foot while the posterior facet and CC joint had to be congruent with a step-off less than 2 mm. Several functional scores related to foot and ankle pathology were used to evaluate functional outcomes (American Orthopedic Foot and Ankle Score - AOFAS, Lower Extremity Functional Score - LEFS, Olerud and Molander Ankle Score - OMAS, Calcaneal Functional Scoring System - CFSS, Visual Analog Scale for pain – VAS) and were compared between anatomic and nonanatomic DIAFCs using Student's t-test. Demographic data and information about injury severity were collected for each patient. Among the 84 enrolled patients, 6 were excluded while 11 were lost to follow-up. Thirty-nine patients had a nonanatomic reduction while 35 patients had an anatomic reduction (47%). Baseline characteristics were similar in both groups. When we compared the injury severity as defined by the Sanders’ Classification, we did not find a significant difference. In other words, the nonanatomic group did not have a greater proportion of complex fractures. Anatomically reduced DIACFs showed significantly superior results at 12 months for all but one scoring system (mean difference at 12 months: AOFAS 3.97, p = 0.12; LEFS 7.46, p = 0.003; OMAS 13.6, p = 0.002, CFSS 7.5, p = 0.037; VAS −1.53, p = 0.005). Univariate analyses did not show that smoking status, worker's compensation or body mass index were associated with functional outcomes. Moreover, fracture severity could not predict functional outcomes at 12 months. This study showed superior functional outcomes in patients with a DIACF when an anatomic reduction is achieved regardless of the injury severity


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 65 - 65
1 Dec 2022
Rosario R Coleman R Arruda E Grant J
Full Access

The goal of this study was to identify the effect of mismatches in the subchondral bone surface at the native:graft interface on cartilage tissue deformation in human patellar osteochondral allografts (OCA). Hypothesis: large mismatches in the subchondral bone surface will result in higher stresses in the overlying and surrounding cartilage, potentially increasing the risk of graft failure. Nano-CT scans of ten 16mm diameter cadaveric patellar OCA transplants were used to develop simplified and 3D finite element (FE) models to quantify the effect of mismatches in the subchondral bone surface. The simplified model consisted of a cylindrical plug with a 16 mm diameter (graft) and a washer with a 16 mm inner diameter and 36 mm outer diameter (surrounding native cartilage). The thickness of the graft cartilage was varied from 0.33x the thickness of native cartilage (proud graft subchondral bone) to 3x the thickness of native cartilage (sunken graft subchondral bone; Fig. 1). The thickness of the native cartilage was set to 2 mm. The surface of the cartilage in the graft was matched to the surrounding native cartilage. A 1 MPa pressure was applied to the fixed patellar cartilage surface. Scans were segmented using Dragonfly and meshed using HyperMesh. FE simulations were conducted in Abaqus 2019. The simplified model demonstrated that a high stress region occurred in the cartilage at the sharp bony edge between the graft and native subchondral bone, localized to the region with thinner cartilage. A 20% increase in applied pressure occurs up to 50μm away from the graft edge (primarily in the graft cartilage) for grafts with proud subchondral bone but varies little based on the graft cartilage thickness. For grafts with sunken subchondral bone, the size of the high stress region decreases as the difference between graft cartilage and native cartilage thickness decreases (Fig. 2-4), with a 200 μm high stress region occurring when graft cartilage was 3x thicker than native cartilage (i.e., greater graft cartilage thickness produces larger areas of stress in the surrounding native cartilage). The 3D models reproduced the key features demonstrated in the simplified model. Larger differences between native and graft cartilage thickness cause larger high stress regions. Differences between the 3D and simplified models are caused by heterogeneous cartilage surface curvature and thickness. Simplified and 3D FE analysis confirmed our hypothesis that greater cartilage thickness mismatches resulted in higher cartilage stresses for sunken subchondral bone. Unexpectedly, cartilage stresses were independent of the cartilage thickness mismatch for proud subchondral bone. These FE findings did not account for tissue remodeling, patient variability in tissue mechanical properties, or complex tissue loading. In vivo experiments with full-thickness strain measurements should be conducted to confirm these findings. Mismatches in the subchondral bone can therefore produce stress increases large enough to cause local chondrocyte death near the subchondral surface. These stress increases can be reduced by (a) reducing the difference in thickness between graft and native cartilage or (b) using a graft with cartilage that is thinner than the native cartilage. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_5 | Pages 32 - 32
1 Apr 2022
French J Filer J Hogan K Fletcher J Mitchell S
Full Access

Introduction. Computer hexapod assisted orthopaedic surgery (CHAOS) has previously been shown to provide a predictable and safe method for correcting multiplanar femoral deformity. We report the outcomes of tibial deformity correction using CHAOS, as well as a new cohort of femoral CHAOS procedures. Materials and Methods. Retrospective review of medical records and radiographs for patients who underwent CHAOS for lower limb deformity at our tertiary centre between 2012–2020. Results. There were 70 consecutive cases from 56 patients with no loss to follow-up. Mean age was 40 years (17 to 77); 59% male. There were 48 femoral and 22 tibial procedures. Method of fixation was intramedullary nailing in 47 cases and locking plates in 23. Multiplanar correction was required in 43 cases. The largest correction of rotation was 40 degrees, and angulation was 28 degrees. Mean mechanical axis deviation reduction per procedure was 17.2 mm, maximum 89 mm. Deformity correction was mechanically satisfactory in all patients bar one who was under-corrected, requiring revision. Complications from femoral surgery included one under-correction, two cases of non-union, and one pulmonary embolism. Complications from tibial surgery were one locking plate fatigue failure, one compartment syndrome, one pseudoaneurysm of the anterior tibial artery requiring stenting, and one transient neurapraxia of the common peroneal nerve. There were no deaths. Conclusions. CHAOS can be used for reliable correction of complex deformities of both the femur and tibia. The risk profile appears to differ between femoral and tibial surgeries


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 39 - 39
23 Feb 2023
Jo O Almond M Rupasinghe H Jo O Ackland D Ernstbrunner L Ek E
Full Access

Neer Type-IIB lateral clavicle fractures are inherently unstable fractures with associated disruption of the coracoclavicular (CC) ligaments. A novel plating technique using a superior lateral locking plate with antero-posterior (AP) locking screws, resulting in orthogonal fixation in the lateral fragment has been designed to enhance stability. The purpose of this study was to biomechanically compare three different clavicle plating constructs. 24 fresh-frozen cadaveric shoulders were randomised into three groups (n=8 specimens). Group 1: lateral locking plate only (Medartis Aptus Superior Lateral Plate); Group 2: lateral locking plate with CC stabilisation (Nr. 2 FiberWire); and Group 3: lateral locking plate with two AP locking screws stabilising the lateral fragment. Data was analysed for gap formation after cyclic loading, construct stiffness and ultimate load to failure, defined by a marked decrease in the load displacement curve. After 500 cycles, there was no statistically significant difference between the three groups in gap-formation (p = 0.179). Ultimate load to failure was significantly higher in Group 3 compared to Group 1 (286N vs. 167N; p = 0.022), but not to Group 2 (286N vs. 246N; p = 0.604). There were no statistically significant differences in stiffness (Group 1: 504N/mm; Group 2: 564N/mm; Group 3: 512N/mm; p = 0.712). Peri-implant fracture was the primary mode of failure for all three groups, with Group 3 demonstrating the lowest rate of peri-implant fractures (Group 1: 6/8; Group 2: 7/8, Group 3: 4/8; p = 0.243). The lateral locking plate with orthogonal AP locking screw fixation in the lateral fragment demonstrated the greatest ultimate failure load, followed by the lateral locking plate with CC stabilization. The use of orthogonal screw fixation in the distal fragment may negate against the need for CC stabilization in these types of fractures, thus minimizing surgical dissection around the coracoid and potential complications


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_3 | Pages 20 - 20
1 Apr 2019
Iqbal M Batta V Pulimamidi S Sharma A Sundararajan S Manjure S
Full Access

Background. Bone preservation is desired for future revision in any knee arthroplasty. There is no study comparing the difference in the amount of bone resection when soft tissue balance is performed with or without computer navigation. To determine the effect on bony cuts when soft tissue balance is performed with or without use of computer software by standard manual technique in total knee arthroplasty. One hundred patients aged 50 to 88 years underwent navigated TKR for primary osteoarthritis. In group A, 50 patients had both soft tissue release and bone cuts done using computer-assisted navigation. In group B, 50 patients had soft tissue release by standard manual technique first and then bone cuts were guided by computer-assisted navigation. In group A the mean medial tibial resection was 5 ± 2.3 mm and lateral was 8 ± 1 mm compared to 5 ± 2 mm (P = 0.100) and 8 ± 1 mm respectively in group B (P = 0.860). In group A the mean medial femoral bone cut was 9 ± 2.9 mm and lateral was 8 ± 2 mm as compared to 9.5 ± 2.9 mm (P = 0.316) and 10 ± 2.2 mm respectively in group B (P = 0.001). Average prosthesis size was 6 (range 3 to 8) in group A as compared to size 5 (range 2 to 7) in group B. Average navigation time in group A was 102 minutes (range 45 to 172) and in group B was 83 minutes (range 42 to 165, P = 0.031). Our results show that performing soft tissue release and bone cuts using computer- assisted navigation is more bone conserving as compared to manual soft tissue release and bone cuts using computer navigation for TKR, thus preserving bone for possible future revision surgery


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 2 - 2
1 Mar 2021
Changoor A Suderman R Alshaygy I Fuhrmann A Akens M Safir O Grynpas M Kuzyk P
Full Access

Patients undergoing revision surgery of a primary total hip arthroplasty often exhibit bone loss and poor bone quality, which make achieving stable fixation and osseointegration challenging. Implant components coated in porous metals are used clinically to improve mechanical stability and encourage bone in-growth. We compared ultra-porous titanium coatings, known commercially as Gription and Porocoat, in an intra-articular model by press-fitting coated cylindrical implants into ovine femoral condyles and evaluating bone in-growth and fixation strength 4, 8 and 16 weeks post-operatively. Bilateral surgery using a mini-arthrotomy approach was performed on twenty-four Dorset-Rideau Arcott rams (3.4 ± 0.8 years old, 84.8 ± 9.3 kg) with Institutional Animal Care Committee approval in accordance with the Canadian Council on Animal Care. Cylindrical implants, 6.2 mm in diameter by 10 mm in length with surface radius of curvature of 35 mm, were composed of a titanium substrate coated in either Porocoat or Gription and press-fit into 6 mm diameter recipient holes in the weight-bearing regions of the medial (MFC) and lateral (LFC) femoral condyles. Each sheep received 4 implants; two Gription in one stifle (knee) and two Porocoat in the contralateral joint. Biomechanical push-out tests (Instron ElectroPuls E10000) were performed on LFCs, where implants were pushed out relative to the condyle at a rate of 2 mm/min. Force and displacement data were used to calculate force and displacement at failure, stiffness, energy, stress, strain, elastic modulus, and toughness. MFCs were fixed in 70% ethanol, processed undecalcified, and polished sections, approximately 70 µm thick (Exakt Micro Grinding system) were carbon-coated. Backscattered electron images were collected on a scanning electron microscope (Hitachi SU3500) at 5 kV and working distance of 5 mm. Bone in-growth within the porous coating was quantified using software (ImageJ). Statistical comparisons were made using a two-way ANOVA and Fisher's LSD post-hoc test (Statistica v.8). Biomechanical evaluation of the bone-implant interface revealed that by 16 weeks, Gription-coated implants exhibited higher force (2455±1362 N vs. 1002±1466 N, p=0.046) and stress (12.60±6.99 MPa vs. 5.14±7.53 MPa, p=0.046) at failure, and trended towards higher stiffness (11510±7645 N/mm vs. 5010±8374 N/mm, p=.061) and modulus of elasticity (591±392 MPa vs. 256±431 MPa, p=0.61). Similarly, by 16 weeks, bone in-growth in Gription-coated implants was approximately double that measured in Porocoat (6.73±3.86 % vs. 3.22±1.52 %, p=0.045). No statistically significant differences were detected at either 4 nor 8 weeks, however, qualitative observations of the exposed bone-implant interface, made following push-out testing, showed more bony material consistently adhered to Gription compared to Porocoat at all three time points. High variability is attributed to implant placement, resulting from the small visual window afforded during surgery, unique curvatures of the condyles, and presence of the extensor digitorum longus tendon which limited access to the LFC. Ultra-porous titanium coatings, know commercially as Gription and Porocoat, were compared for the first time in a challenging intra-articular ovine model. Gription provided superior fixation strength and bone in-growth, suggesting it may be beneficial in hip replacement surgeries where bone stock quality and quantity may be compromised


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 72 - 72
1 Dec 2022
Lamer S Ma Z Mazy D Chung-Tze-Cheong C Nguyen A Li J Nault M
Full Access

Meniscal tears are the most common knee injuries, occurring in acute ruptures or in chronic degenerative conditions. Meniscectomy and meniscal repair are two surgical treatment options. Meniscectomy is easier, faster, and the patient can return to their normal activities earlier. However, this procedure has long-term consequences in the development of degenerative changes in the knee, potentially leading to knee replacement. On the other hand, meniscal repair can offer prolonged benefits to the patients, but it is difficult to perform and requires longer rehabilitation. Sutures are used for meniscal repairs, but they have limitations. They induce tissue damage when passing through the meniscus. Furthermore, under dynamic loading of the knee, they can cause tissue shearing and potentially lead to meniscal repair failure. Our team has developed a new technology of resistant adhesive hydrogels to coat the suture used to repair meniscal tissue. The objective of this study is to biomechanically compare two suture types on bovine menisci specimens: 1) pristine sutures and 2) gel adhesive puncture sealing (GAPS) sutures, on a repaired radial tear under cyclic tensile testing. Five bovine knees were dissected to retrieve the menisci. On the 10 menisci, a complete radial tear was performed. They were separated in two groups and repaired using either pristine (2-0 Vicryl) or GAPS (2-0 Vicryl coated with adhesive hydrogels) with a single stitch and five knots. The repaired menisci were clamped on an Instron machine. The specimens were cyclically preconditioned between one and 10 newtons for 10 cycles and then cyclically loaded for 500 cycles between five and 25 newtons at a frequency of 0.16 Hz. The gap formed between the edges of the tear after 500 cycles was then measured using an electronic measurement device. The suture loop before and after testing was also measured to ensure that there was no suture elongation or loosening of the knot. The groups were compared statistically using Mann-Whitney tests for nonparametric data. The level of significance was set to 0.05. The mean gap formation of the pristine sutures was 5.61 mm (SD = 2.097) after 500 cycles of tensile testing and 2.38 mm (SD = 0.176) for the GAPS sutures. Comparing both groups, the gap formed with the coated sutures was significantly smaller (p = 0.009) than with pristine sutures. The length of the loop was equal before and after loading. Further investigation of tissue damage indicated that the gap was formed by suture filament cutting into the meniscal tissue. The long-term objective of this research is to design a meniscal repair toolbox from which the surgeon can adapt his procedure for each meniscal tear. This preliminary experimentation on bovine menisci is promising because the new GAPS sutures seem to keep the edges of the meniscal tear together better than pristine sutures, with hopes of a clinical correlation with enhanced meniscal healing


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 66 - 66
1 Dec 2022
Lamer S Ma Z Mazy D Chung-Tze-Cheong C Nguyen A Li J Nault M
Full Access

Meniscal tears are the most common knee injuries, occurring in acute ruptures or in chronic degenerative conditions. Meniscectomy and meniscal repair are two surgical treatment options. Meniscectomy is easier, faster, and the patient can return to their normal activities earlier. However, this procedure has long-term consequences in the development of degenerative changes in the knee, potentially leading to knee replacement. On the other hand, meniscal repair can offer prolonged benefits to the patients, but it is difficult to perform and requires longer rehabilitation. Sutures are used for meniscal repairs, but they have limitations. They induce tissue damage when passing through the meniscus. Furthermore, under dynamic loading of the knee, they can cause tissue shearing and potentially lead to meniscal repair failure. Our team has developed a new technology of resistant adhesive hydrogels to coat the suture used to repair meniscal tissue. The objective of this study is to biomechanically compare two suture types on bovine menisci specimens: 1) pristine sutures and 2) gel adhesive puncture sealing (GAPS) sutures, on a repaired radial tear under cyclic tensile testing. Five bovine knees were dissected to retrieve the menisci. On the 10 menisci, a complete radial tear was performed. They were separated in two groups and repaired using either pristine (2-0 Vicryl) or GAPS (2-0 Vicryl coated with adhesive hydrogels) with a single stitch and five knots. The repaired menisci were clamped on an Instron machine. The specimens were cyclically preconditioned between one and 10 newtons for 10 cycles and then cyclically loaded for 500 cycles between five and 25 newtons at a frequency of 0.16 Hz. The gap formed between the edges of the tear after 500 cycles was then measured using an electronic measurement device. The suture loop before and after testing was also measured to ensure that there was no suture elongation or loosening of the knot. The groups were compared statistically using Mann-Whitney tests for nonparametric data. The level of significance was set to 0.05. The mean gap formation of the pristine sutures was 5.61 mm (SD = 2.097) after 500 cycles of tensile testing and 2.38 mm (SD = 0.176) for the GAPS sutures. Comparing both groups, the gap formed with the coated sutures was significantly smaller (p = 0.009) than with pristine sutures. The length of the loop was equal before and after loading. Further investigation of tissue damage indicated that the gap was formed by suture filament cutting into the meniscal tissue. The long-term objective of this research is to design a meniscal repair toolbox from which the surgeon can adapt his procedure for each meniscal tear. This preliminary experimentation on bovine menisci is promising because the new GAPS sutures seem to keep the edges of the meniscal tear together better than pristine sutures, with hopes of a clinical correlation with enhanced meniscal healing


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 86 - 86
1 Dec 2022
Grant M Bokhari R Alsaran Y Epure LM Antoniou J Mwale F
Full Access

Degenerative disc disease (DDD) is a common cause of lower back pain. Calcification of the intervertebral disc (IVD) has been correlated with DDD, and is especially prevalent in scoliotic discs. The appearance of calcium deposits has been shown to increase with age, and its occurrence has been associated with several other disorders such as hyperparathyroidism, chondrocalcinosis, and arthritis. Trauma, vertebral fusion and infection have also been shown to increase the incidence of IVD calcification. Our data indicate that Ca. 2+. and expression of the extracellular calcium-sensing receptor (CaSR) are significantly increased in mild to severely degenerative human IVDs. In this study, we evaluated the effects of Ca. 2+. and CaSR on the degeneration and calcification of IVDs. Human donor lumbar spines of Thompson grade 2, 3 and 4 through organ donations within 24 hs after death. IVD cells, NP and AF, were isolated from tissue by sequential digestion with Pronase followed by Collagenase. Cells were expanded for 7 days under standard cell culture conditions. Immunohistochemistry was performed on IVD tissue to validate the grade and expression of CaSR. Free calcium levels were also measured and compared between grades. Immunocytochemistry, Western blotting and RT-qPCR were performed on cultured NP and AF cells to demonstrate expression of CaSR, matrix proteins aggrecan and collagen, catabolic enzymes and calcification markers. IVD cells were cultured in increasing concentrations of Ca. 2+. [1.0-5.0 mM], CaSR allosteric agonist (cincalcet, 1 uM), and IL-1b [5 ng/mL] for 7 days. Ex vivo IVD organ cultures were prepared using PrimeGrowth Disc Isolation System (Wisent Bioproducts, Montreal, Quebec). IVDs were cultured in 1.0, 2.5 mM Ca. 2+. or with cinacalcet for 21 days to determine effects on disc degeneration, calcification and biomechanics. Complex modulus and structural stiffness of disc tissues was determined using the MACH-1 mechanical testing system (Biomomentum, Laval, Quebec). Ca. 2+. dose-dependently decreased matrix protein synthesis of proteoglycan and Col II in NP and AF cells, similar to treatment with IL-1b. (n = 4). Contrarily to IL-1b, Ca. 2+. and cincalcet did not significantly increase the expression of catabolic enzymes save ADAMTS5. Similar effects were observed in whole organ cultures, as Ca. 2+. and cinacalcet decreased proteoglycan and collagen content. Although both Ca. 2+. and cinacalcet increased the expression of alkaline phosphatase (ALP), only in Ca. 2+. -treated IVDs was there evidence of calcium deposits in NP and AF tissues as determined by von Kossa staining. Biomechanical studies on Ca. 2+. and cinacalcet-treated IVDs demonstrated decreases in complex modulus (p<0.01 and p<0.001, respectively; n=5), however, only Ca. 2+. -treated IVDs was there significant increases stiffness in NP and AF tissues (p<0.001 and p<0.05, respectively; n=3). Our results suggest that changes in the local concentrations of calcium and activation of CaSR affects matrix protein synthesis, calcification and IVD biomechanics. Ca. 2+. may be a contributing factor in IVD degeneration and calcification


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 80 - 80
1 Dec 2022
Nauth A Dehghan N Schemitsch C Schemitsch EH Jenkinson R Vicente M McKee MD
Full Access

There has been a substantial increase in the surgical treatment of unstable chest wall injuries recently. While a variety of fixation methods exist, most surgeons have used plate and screw fixation. Rib-specific locking plate systems are available, however evidence supporting their use over less-expensive, conventional plate systems (such as pelvic reconstruction plates) is lacking. We sought to address this by comparing outcomes between locking plates and non-locking plates in a cohort of patients from a prior randomized trial who received surgical stabilization of their unstable chest wall injury. We used data from the surgical group of a previous multi-centred, prospective, randomized controlled trial comparing surgical fixation of acute, unstable chest wall injuries to non-operative management. In this substudy, our primary outcome was hardware-related complications and re-operation. Secondary outcomes included ventilator free days (VFDs) in the first 28 days following injury, length of ICU and hospital stay, and general health outcomes (SF-36 Physical Component Summary (PCS) and Mental Component Summary (MCS) scores). Categorical variables are reported as frequency counts and percentages and the two groups were compared using Fisher's Exact test. Continuous data are reported as median and interquartile range and the two groups were compared using the Wilcoxon rank-sum test. From the original cohort of 207 patients, 108 had been treated surgically and had data available on the type of plate construct used. Fifty-nine patients (55%) had received fixation with non-locking plates (primarily 3.5 or 2.7 mm pelvic reconstruction plates) and 49 (45%) had received fixation with locking plates (primarily rib-specific locking plates). The two groups were similar in regard to baseline and injury characteristics. In the non-locking group, 15% of patients (9/59) had evidence of hardware loosening versus 4% (2/49 patients) in the locking group (p = 0.1). The rate of re-operation for hardware complications was 3% in the non-locking group versus 0% in the locking group (p = 0.5). No patients in either group required revision fixation for loss of reduction or nonunion. There were no differences between the groups with regard to VFDs (26.3 [19.6 – 28] vs. 27.3 [18.3 – 28], p = 0.83), length of ICU stay (6.5 [2.0 – 13.1] vs 4.1 [0 – 11], p = 0.12), length of hospital stay (17 [10 – 32] vs. 17 [10 – 24], p = 0.94) or SF-36 PCS (40.9 [33.6 – 51.0] vs 43.4 [34.1 – 49.6], p = 0.93) or MCS scores (47.8 [36.9 – 57.9] vs 46.9 [40.5 – 57.4], p = 0.95). We found no statistically significant differences in outcomes between patients who received surgical stabilization of their unstable chest wall injury when comparing non-locking plates versus locking plates. However, the rate of hardware loosening was nearly 4 times higher in the non-locking plate group and trended towards statistical significance, although re-operation related to this was less frequent. This finding is not surprising, given the inherent challenges of rib fixation including thin bones, comminution, potential osteopenia and a post-operative environment of constant motion. We believe that the increased cost of locking plate fixation in this setting is likely justifiable given these findings


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_6 | Pages 19 - 19
1 May 2021
Vaidean TG Round JM Qureshi AA
Full Access

Introduction. To report our early experience and suitability over unicortical fixation system to reduce and hold the bone fragments in position during a CHAOS procedure of the femur or tibia during lower limb reconstruction surgery. Materials and Methods. We report a case series of the first consecutive 10 patients (11 bones) for which this CHAOS technique was used between May 2017 and October 2019 by the same surgeon. The novel aspect of the procedure was the use of a unicortical device, Galaxy UNYCO (Orthofix, Verona, Italy), which eliminate the need for any change of fixation during the procedure. It also means the intramedullary canal was left free for the intramedullary nailing. Results. We treated 4 femurs and 7 tibias with this technique without any loss or failure of the construct. We treated uniplanar and multiplanar deformities with the angulations between 8 degrees of valgus to 15 degrees of varus and from 0 to 8 mm translation in the AP view, from 20 degrees procurvatum to 15 degrees recurvatum and 0 to 2 mm translation on the lateral view and from 20 degrees internal rotation to 5 degrees external rotation and 0 to 10 mm translation on axial view. Conclusions. The construct was able to deal with the total tension in the system both in the correction phase and the additional stress applied during insertion of a nail such as reaming and impacting the nail to the canal. The potential advantage also included the possibility of intramedullary nailing without interference with the external fixation device


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 74 - 74
1 Apr 2019
Giles J Broden C Tempelaere C Rodriguez-Y-Baena F
Full Access

PURPOSE. To validate the efficacy and accuracy of a novel patient specific guide (PSG) and instrumentation system that enables minimally invasive (MI) short stemmed total shoulder arthroplasty (TSA). MATERIALS AND METHODS. Using Amirthanayagam et al.'s (2017) MI posterior approach reduces incision size and eliminates subscapular transection; however, it precludes glenohumeral dislocation and the use of traditional PSGs and instruments. Therefore, we developed a PSG that guides trans-glenohumeral drilling which simultaneously creates a humeral guide tunnel/working channel and glenoid guide hole by locking the bones together in a pre-operatively planned pose and drilling using a c-shaped drill guide (Figure 1). To implant an Affinis Short TSA system (Mathys GmbH), novel MI instruments were developed (Figure 2) for: humeral head resection, glenoid reaming, glenoid peg hole drilling, impaction of cruciform shaped humeral bone compactors, and impaction of a short humeral stem and ceramic head. The full MI procedure and instrument system was evaluated in six cadaveric shoulders with osteoarthritis. Accuracy was assessed throughout the procedure: 1) PSG physical registration accuracy, 2) guide hole accuracy, 3) implant placement accuracy. These conditions were assessed using an Optotrak Certus tracking camera (NDI, Waterloo, CA) with comparisons made to the pre-operative plan using a registration process (Besl and McKay, 1992). RESULTS. 3D translational accuracy of PSG physical registration was: humeral PSG- 2.2 ± 1.1 mm and scapula PSG- 2.5 ± 0.7 mm. The humeral and scapular guide holes had angular accuracies of 6.4 ± 3.2° and 8.1 ± 5.1°, respectively; while the guide hole positional accuracies on the articular surfaces (which will control bone preparation translational accuracy) were 2.9 ± 1.2 mm and 2.8 ± 1.3 mm. Final implantation accuracy in translation was 2.9 ± 3.0 mm and 5.7–6.8 ± 2.2–4.0° across the implants’ three rotations for the humerus and in translation was 2.8 ± 1.5 mm and 2.3–4.3 ± 2.2–4.4° across the implants’ three rotations for the scapula (Figure 3). DISCUSSION. The overall implantation accuracy was similar to results of previously reported open, unassisted TSA (3.4 mm & 7–12°, Hendel et al., 2012, Nguyen et al., 2009). Analysis of the positional PSG registration accuracy very closely mirrors the final implantation accuracy (humerus:2.2 mm vs 2.9 mm, and scapula:2.2 mm vs 2.8mm), thus, this is likely the primary predictor of implantation accuracy. Furthermore, the greatest component of PSG registration error was mediolateral translation (i.e. along the guiding axis) and thus should not affect guide hole drilling accuracy. The drilled guide hole positional and angular error was low for the humerus (2.9 mm and 6.4°) but somewhat higher in rotation (8.1°) for the glenoid which may indicate a slight shift in the PSG prior to guide hole drilling due to the weight of the arm applied when the PSGs are locked together. In conclusion, this work has detailed the step-by-step surgical errors associated with the developed system and demonstrated that it achieves similar accuracy to open, unassisted TSA, while avoiding complications related to muscular transection and dislocation. Therefore, we believe this technique is worthy of clinical investigation


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 100 - 100
1 Feb 2020
Khasian M LaCour M Coomer S Komistek R
Full Access

Background. Although early TKA designs were symmetrical, during the past two decades TKA have been designed to include asymmetry, pertaining to either the trochlear groove, femoral condylar shapes or the tibial component. More recently, a new TKA was designed to include symmetry in all areas of the design, in the hopes of reducing design and inventory costs. Objective. The objective of this study was to determine the in vivo kinematics for subjects implanted with this symmetrical TKA during a weight-bearing deep knee bend activity. Methods. In vivo deep knee bend (DKB) kinematics for 21 subjects implanted with symmetrical posterior cruciate sacrificing (PCS) fixed bearing TKA were obtained using fluoroscopy. A 3D-to-2D registration technique was used to determine each subjects anteroposterior translation of lateral (LAP) and medial (MAP) femoral condyles and tibiofemoral axial rotation and their weight-bearing knee flexion. Results. During the DKB, the average maximum weight-bearing flexion was 111.7° ± 13.3°. On average, from full extension to maximum knee flexion, subjects experienced 2.5 mm ± 2.0 mm femoral rollback on lateral condyle −2.5 mm ± 2.2 mm of medial condyle motion in the anterior direction (Figure 1). This medial condyle motion was consistent for the majority of the subjects with the lateral condyle exhibiting rollback from 0° to 60° of flexion and then an average anterior slide of 0.3 mm from 60° to 90° of flexion. On average, the subjects in this study experienced 6.6° ± 3.3° of axial rotation, with most of rotation occurring in early flexion, averaging 4.9° (Figure 2). Discussion. Although subjects in this study were implanted with a symmetrical TKA, they did experience femoral rollback of the lateral condyle and positive axial rotation. Both of these kinematic parameters were normal-like in pattern, compared to the normal knee in early flexion, but in deeper flexion the pattern of motion varied from the normal knee. Also, the magnitude of posterior femoral rollback and axial rotation revealed similarities to previous fluoroscopy studies on subjects implanted with an asymmetrical TKA design. This was only a single surgeon study, so it is unclear if the results are TKA or surgeon influenced. Therefore, it is proposed that more patients be analyzed having this TKA implanted by other surgeons. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 19 - 19
1 Aug 2020
Morash K Gauthier L Orlik B El-Hawary R Logan K
Full Access

Slipped capital femoral epiphysis (SCFE) is traditionally treated with in situ fixation using a threaded screw, leading to physeal arrest while stabilizing the femoral head. Recently, there has been interest in alternative methods of fixation for SCFE, aiming to allow growth and remodelling of the femoral neck postoperatively. One such option is the Free Gliding SCFE Screw (Pega Medical), which employs a telescopic design intended to avoid physeal compression. The objective of this study is to evaluate radiographic changes of the proximal femur following in situ fixation using the Free Gliding SCFE Screw. This study retrospectively evaluated 28 hips in 14 consecutive patients who underwent in situ hip fixation using the Free Gliding SCFE Screw between 2014 and 2018. Initial postoperative radiographs were compared to last available follow-up imaging. Radiographic assessment included screw length, articulotrochanteric distance (ATD), posterior sloping angle (PSA), alpha angle, head-neck offset (HNO) and head-shaft angle (HSA). Of the 28 hips reviewed, 17 were treated for SCFE and an additional 11 treated prophylactically. Average age at surgery was 11.7 years, with an average follow-up of 1.44 years. Screw length increased by 2.3 mm (p < 0.001). ATD decreased from 25.4 to 22.2 mm (p < 0.001). Alpha angle decreased from 68.7 to 59.8 degrees (p = 0.004). There was a trend towards an increase in HNO (p = 0.07). There was no significant change in PSA or HAS. There were three complications (two patients with retained broken guide wires, and one patient requiring screw removal for hip pain). With use of the Free Gliding SCFE Screw, there was evidence of screw expansion and femoral neck remodelling with short-term follow-up. More research is required to determine the long-term impact of these changes on hip function, and to aid in patient selection for this technology