header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 57 - 57
1 Feb 2017
Campbell P Yuan N Luck J Courpron P Park S
Full Access

Recently, a special type of surface pitting found on metal implants was proposed to arise from “inflammatory cell-induced” corrosion (ICI, Figure 1) (1, 2). The actual mechanism of this was unknown, but similar features were suggested to be artefacts of electrocautery damage from revision surgery (3). Under lab conditions and without the influence of any cells, we aimed to reproduce the same surface pits and structures with electrocautery.

Methods

A polished cobalt-chromium disk (40 mm diameter, 8 mm thick) was marked into 8 sections for various testing conditions (Figure 2a). A stainless steel Bovie tip with a unipolar electrocautery machine (SYSTEM 5000, ConMed, USA) was used at typical surgical coagulation conditions: (70 volt, 120 watts, 562 KHz frequency). We mimicked three types of surgical techniques with the electrocautery: “Dotting” was repeated, on and off, direct surface contact; “Dragging” was constant, direct surface contact; “Hovering” was pausing several millimeters above the surface. We also examined the interplay of these practices on diamond-tip-induced scratches and either dry or wet (normal saline) conditions. High magnification images (Keyence VHX-2000E) were taken after the disk was cleaned with laboratory soap, light mechanical scrubbing, and formalin soak.

Results

Coagulation mode generated electrical sparks when dotting/dragging and electrical arcs when hovering. These left seared marks that persisted even after cleaning (Figure 2b). At higher magnification, the surface features were comparable in size and shape to those attributed to ICI (1, 2). Areas wet with saline (Figure 3a) showed an abundance of ringed pits with raised edges that closely resembled those observed in Figure 1. Furthermore we obtained images similar to the phenomenon of “cellular tracks” (Figure 3b) (1). Premade scratches did not influence the pit arrangement but scratches made by the Bovie tip produced the characteristic scratch-associated ICI features as observed on implant retrievals in the past (Figure 3c) (4).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 58 - 58
1 Feb 2017
Campbell P Yuan N Ebramzadeh E
Full Access

Young osteoarthritic male patients have been considered the ideal candidates for Metal-on-Metal (MoM) hip resurfacing arthroplasty (HRA), based on generally good long term results. In contrast, hip resurfacing in young female patients has become controversial. Recently, one implant manufacturer withdrew 46mm and smaller components, citing poorer than expected 10 year outcomes in females with smaller HRAs. Whether this difference is related to gender or to component size is still debated. Possible reasons for higher failure rates reported in females include higher rates of hip dysplasia, poorer bone quality and the risk of higher wear in some smaller sized implants with low cup coverage angles.

We reviewed HRA revision specimens with the aim of comparing mode of failure, time to revision, femoral cement characteristics and acetabular bone attachment in specimens larger and smaller than 46mm and from male versus female patients.

Methods

The study included all of the MoM HRA devices in our collection. Of the 284 hip resurfacing devices with complete clinical information, 131 were from male and 153 from female patients. Femoral sizes ranged from 36 – 58mm, median and mode 46mm; median size in females was 44 and 50mm in males. Time to failure ranged from 1 to 178 months, median 24 mos. Seven designs were represented but the majority were Conserve Plus (n=105 WMT, USA) and BHR (n=78 Smith & Nephew, USA) which differ in cementing technique. 131 femoral components were sectioned and the width of the cement mantle and the amount of cement in the head were measured. Where available, the amount of bone attached to the cup porous surface (n=91), tissue ALVAL scores (n=75) and bearing wear depth (n=138) were included in the multivariate analysis.

Results

As a function of gender, there were no significant differences in time to revision, cement measurements or ALVAL scores. Wear depth was significantly higher in females (femoral 41um vs 21um; cup 50um vs 16um, p=0.05). As a function of size (46 and less = small), the <46mm group had a slightly shorter time to revision, 30 vs 38 months, p=0.04). Bone ingrowth ranged from 0 to 60% (Figure 1) and significantly less bone attachment was noted in both the smaller and larger components (p = 0.001). Other characteristics were similar in both groups. When wear-related failure modes (cup malposition, lysis, high ions) were compared, no differences between male and female or large vs small were found. The amount of cement in the femoral heads covered a wide range but femoral loosening or fracture rates were not different as a function of size or gender.