header advert
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 88 - 88
1 Nov 2021
Pastor T Zderic I Gehweiler D Richards RG Knobe M Gueorguiev B
Full Access

Introduction and Objective

Trochanteric fractures are associated with increasing incidence and represent serious adverse effect of osteoporosis. Their cephalomedullary nailing in poor bone stock can be challenging and associated with insufficient implant fixation in the femoral head. Despite ongoing implant improvements, the rate of mechanical complications in the treatment of unstable trochanteric fractures is high. Recently, two novel concepts for nailing with use of a helical blade – with or without bone cement augmentation – or an interlocking screw have demonstrated advantages as compared with single screw systems regarding rotational stability and cut-out resistance. However, these two concepts have not been subjected to direct biomechanical comparison so far. The aims of this study were to investigate in a human cadaveric model with low bone density (1) the biomechanical competence of cephalomedullary nailing with use of a helical blade versus an interlocking screw, and (2) the effect of cement augmentation on the fixation strength of the helical blade.

Materials and Methods

Twelve osteoporotic and osteopenic femoral pairs were assigned for pairwise implantation using either short TFN-ADVANCED Proximal Femoral Nailing System (TFNA) with a helical blade head element, offering the option for cement augmentation, or short TRIGEN INTERTAN Intertrochanteric Antegrade Nail (InterTAN) with an interlocking screw. Six osteoporotic femora, implanted with TFNA, were augmented with 3 ml cement. Four study groups were created – group 1 (TFNA) paired with group 2 (InterTAN), and group 3 (TFNA augmented) paired with group 4 (InterTAN). An unstable pertrochanteric OTA/AO 31-A2.2 fracture was simulated. All specimens were biomechanically tested until failure under progressively increasing cyclic loading featuring physiologic loading trajectory, with monitoring via motion tracking.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 97 - 97
1 Nov 2021
Richards RG Moriarty TF D'Este M
Full Access

Orthopedic device-related bone infection is one of the most distressing complications of the surgical fixation of fractures. Despite best practice in medical and surgical interventions, the rate of infection remains stubbornly persistent, and current estimates indicate that treatment failure rates are also significant. As we approach the limit of the effectiveness of current anti-infective preventative and therapeutic strategies, novel approaches to infection management assume great importance. This presentation will describe our efforts to develop and test various hydrogels to serve as customized antibiotic delivery vehicles for infection prevention and treatment. Hydrogels offer solutions for many of the challenges faced by complex trauma wounds as they are not restricted spatially within a poorly defined surgical field, they often degrade rapidly with no compatibility issues, and releases 100% of the loaded antibiotic. The preliminary data set proving efficacy in preventing and treating infection in both rabbit and sheep studies will be described, including local antibiotic concentrations in the intramedullary canal over time, compared to that of the more conventional antibiotic loaded bone cement. These two technologies show potential for the prevention and treatment of infection in trauma patients, with a clear focus on optimized antibiotic delivery tailored for complex wounds.


Bone & Joint Research
Vol. 6, Issue 5 | Pages 296 - 306
1 May 2017
Samara E Moriarty TF Decosterd LA Richards RG Gautier E Wahl P

Objectives

Thermal stability is a key property in determining the suitability of an antibiotic agent for local application in the treatment of orthopaedic infections. Despite the fact that long-term therapy is a stated goal of novel local delivery carriers, data describing thermal stability over a long period are scarce, and studies that avoid interference from specific carrier materials are absent from the orthopaedic literature.

Methods

In this study, a total of 38 frequently used antibiotic agents were maintained at 37°C in saline solution, and degradation and antibacterial activity assessed over six weeks. The impact of an initial supplementary heat exposure mimicking exothermically curing bone cement was also tested as this material is commonly used as a local delivery vehicle. Antibiotic degradation was assessed by liquid chromatography coupled to mass spectrometry, or by immunoassays, as appropriate. Antibacterial activity over time was determined by the Kirby-Bauer disk diffusion assay.