Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_X | Pages 101 - 101
1 Apr 2012
Moghadas P Hukins D Shepherd D Mahomed A
Full Access

School of Mechanical Engineering, University of Birmingham, Birmingham, UK

This study investigated the effects on friction of changing the dimensions of a ball-and-socket Total Disc Arthroplasty (TDA).

A generic ball-and-socket model was designed and manufactured based on the dimensions and geometry of a metal-on-metal Maverick (Medtronic, Minneapolis, USA) device. Keeping the radial clearance similar to the Maverick, the ball and socket dimensions varied between 10 to 16 mm and 10.015 to 16.015 mm, respectively, in order to enable the comparison between different dimensions. The implants were made out of Cobalt Chrome Molybdenum alloy, with a surface roughness of 0.05 μm.

A Bose spine simulator (Bose Corporation, ElectroForce Systems Group, Minnesota, USA) was used to apply an axial compressive force to the TDA. Axial rotation of ±2° was then applied at various frequencies and the resulting frictional torque measured. The tests were performed under an axial load of 50, 600 and 1200 N and frequencies of 0.5, 1.0, 1.5 and 2.0 Hz, for four different samples of radii 10, 12, 14 and 16 mm (48 combinations in total).

The results showed variation of frictional torque in different frequencies for all four samples under constant axial load. It was observed that the frictional torque had the lowest value for the implant with ball radius of 16mm. It might be concluded that the implant with larger ball radius may create less friction and hence offer a longer life.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 2 | Pages 273 - 279
1 Feb 2007
Chuter GSJ Cloke DJ Mahomed A Partington PF Green SM

There are many methods for analysing wear volume in failed polyethylene acetabular components. We compared a radiological technique with three recognised ex vivo methods of measurement.

We tested 18 ultra-high-molecular-weight polyethylene acetabular components revised for wear and aseptic loosening, of which 13 had pre-revision radiographs, from which the wear volume was calculated based upon the linear wear. We used a shadowgraph technique on silicone casts of all of the retrievals and a coordinate measuring method on the components directly. For these techniques, the wear vector was calculated for each component and the wear volume extrapolated using mathematical equations. The volumetric wear was also measured directly using a fluid-displacement method. The results of each technique were compared.

The series had high wear volumes (mean 1385 mm3; 730 to 1850) and high wear rates (mean 205 mm3/year; 92 to 363). There were wide variations in the measurements of wear volume between the radiological and the other techniques. Radiograph-derived wear volume correlated poorly with that of the fluid-displacement method, co-ordinate measuring method and shadowgraph methods, becoming less accurate as the wear increased. The mean overestimation in radiological wear volume was 47.7% of the fluid-displacement method wear volume.

Fluid-displacement method, coordinate measuring method and shadowgraph determinations of wear volume were all better than that of the radiograph-derived linear measurements since they took into account the direction of wear. However, only radiological techniques can be used in vivo and remain useful for monitoring linear wear in the clinical setting.

Interpretation of radiological measurements of acetabular wear must be done judiciously in the clinical setting. In vitro laboratory techniques, in particular the fluid-displacement method, remain the most accurate and reliable methods of assessing the wear of acetabular polyethylene.