header advert
Results 1 - 4 of 4
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 446 - 446
1 Dec 2013
Nagamine R Weijia C Todo M Hirokawa S Kondo K Kawasaki M Osano K
Full Access

Purpose:

Differences in the sizes of femoral and tibial components between females and males, between osteoarthritis (OA) and rheumatoid arthritis (RA), and between measured bone resection and the gap control technique during TKA were assessed.

Method:

500 PS-TKAswith the Stryker NRG system in 408 cases were assessed. There were 83 male knees and 417 female knees, and 472 OA knees and 28 RA knees. This study was performed in Japan, and almost all OA knees had varus deformities. In each case, the sizes of the femoral and tibial components were measured on radiographs. The measured sizes represented those of the measured bone resection. TKA was performed by the gap control technique using a tensor/balancer with 30 inch-pounds expansion strength, and the sizes of the femoral and tibial components (used size) were recorded.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 367 - 367
1 Dec 2013
Kawasaki M Nagamine R Kondo K Weijia C Osano K
Full Access

Introduction

Following total knee arthroplasty (TKA), some patients show patella baja. It is possible that patella baja after posterior stabilized (PS)-type TKA causes the patellar clunk syndrome and limitation of flexion. The purpose of this study was to examine patellar height before and after PS-type TKA and identify the factors related to the change in patellar height.

Methods

Lateral X-ray films were taken at 90 degrees flexion before and after TKA using fluoroscopy in 87 patients (95 knees) (Fig. 1a, b). The components and surgical technique for TKA were Scorpio NRG (Stryker) and the modified gap control technique, respectively. The Insall-Salvati ratio (ISR) and the Labelle-Laurin method (LL) were measured as parameters of patellar height (Fig. 1c, d). Posterior condylar offset (PCO) (Fig. 1e), the distance from the anterior femoral line to the tibial tuberosity (TA), and the distance from the tibial tuberosity to the posterior condyle of the femur [TP; {TA-F (the length of the femoral condyle)}] (Fig. 1f) were examined as parameters that could be associated with the change in patellar height. All parameters were divided by patellar length to compensate for the expansion rate in each photograph. The mean LL/P, PCO/P, TA/P, and TP/P before TKA were set at 100%.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 582 - 582
1 Dec 2013
Weijia C Nagamine R Kondo K Osano K
Full Access

INTRODUCTION:

In varus knee, posterior cruciate ligament (PCL) release has been reported to result in the increase of the flexion gap without significant effect on the extension gap. However, the effect of release on gap angle is still obscure. On the other hand, gap angle and distance measured with the tension devices may vary due to different distraction forces. In this study, difference of gap angle and distance before and after PCL resection in knee extension and 90° flexion was inspected. Effect of different distraction force on gap was also assessed.

OBJECTIVES:

Fifty cases with medial osteoarthritis undergoing PS-TKA were included in the study. PCL of all the cases were identified intact before resection.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 277 - 277
1 Mar 2013
Nagamine R Hirokawa S Todo M Weijia C Kondo K
Full Access

Introduction

Reliability of a gap control technique with the tensor/balancer during PS-TKA was assessed by means of fluoroscopic images after TKA.

Methods

Thirty-one subjects were selected for assessment. The mean age of the subjects was 73.0 years old. During PS-TKA, a parapatellar approach was used. Cruciate ligaments were excised, and distal femoral and proximal tibial cuts were made. After all osteophytes were removed, the joint gap angle and distance were measured in full extension and at 90° flexion using a tensor/balancer. Medial soft tissue releases were performed and soft tissue balancing was obtained in full extension so that the joint gap angle was 3° or less than 3°. The joint gap angle and distance between femoral and tibial cut surfaces in full extension, and between a tangent to the posterior femoral condyles and tibial cut surface at 90° flexion were measured. The external rotation angle of the anterior and posterior cuts of the femur was decided based on the joint gap angle at 90° flexion. The size of the femoral component was decided based on the joint gap distance in full extension and at 90° flexion. Then only the trial femoral component was inserted. The joint gap angle and distance between the tangent to the condyles of the trial femoral component and tibial cut surface in full extension and at 90° flexion were measured.

More than one month after TKA, the fluoroscopic images of the prostheses were taken during knee extension/flexion. Then, a torque of about 5 Nm was applied to the lower leg in order to assess the varus/valgus flexibility during flexion. The pattern matching method was used to measure the 3D movements of the prostheses from the fluoroscopic images. The joint gap angle was calculated in full extension and at 90° flexion. The varus/valgus flexibility at each flexion angle was also assessed.