header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 75 - 75
1 Apr 2017
Heigl T Lichte P Kloss K Fischer H Pufe T Tohidnezhad M
Full Access

Background

Large bone defects still challenge the orthopaedic surgeon. Local vascularity at the site of the fracture has an important influence on the healing procedure. Vascular endothelial growth factor (VEGF) and it's receptor (VEGFR2) are potent inducer of angiogenesis during the fracture healing. Aim of the present study was the investigation of critical size fracture (CSF) healing in VEGFR2-luc mice using tailored scaffolds.

Methods

CSFs were performed and stabilised in mouse femur using an external fixator. The fracture was bridged using a synthetic 3D printed scaffold with a defined porosity to promote regeneration. The ß-tricalciumphosphate (ßTCP) and strontium doped ß-tricalciumphosphate (ßTCP+Sr) scaffolds were investigated for their regenerative potential. The expression levels of VEGFR2 could be monitored non-invasively via in vivo bioluminescence imaging for 2 months. After the longitudinal measurements the animals were euthanised for an in depth histological endpoint analysis. The different scaffold induced tissue regeneration was quantified for both, the ßTCP and the ßTCP+Sr group.