header advert
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 69 - 69
1 Feb 2020
Kebbach M Geier A Darowski M Krueger S Schilling C Grupp T Bader R
Full Access

Introduction

Persistent patellofemoral (PF) pain is a common postoperative complication after total knee arthroplasty (TKA). In the USA, patella resurfacing is conducted in more than 80% of primary TKAs [1], and is, therefore, an important factor during surgery. Studies have revealed that the position of the patellar component is still controversially discussed [2–4]. However, only a limited number of studies address the biomechanical impact of patellar component malalignment on PF dynamics [2]. Hence, the purpose of our present study was to analyze the effect of patellar component positioning on PF dynamics by means of musculoskeletal multibody simulation in which a detailed knee joint model resembled the loading of an unconstrained cruciate-retaining (CR) total knee replacement (TKR) with dome patella button.

Material and Methods

Our musculoskeletal multibody model simulation of a dynamic squat motion bases on the SimTK data set (male, 88 years, 66.7 kg) [5] and was implemented in the multibody dynamics software SIMPACK (V9.7, Dassault Systèmes Deutschland GmbH, Gilching, Germany). The model served as a reference for our parameter analyses on the impact on the patellar surfacing, as it resembles an unconstrained CR-TKR (P.F.C. Sigma, DePuy Synthes, Warsaw, IN) while offering the opportunity for experimental validation on the basis of instrumented implant components [5]. Relevant ligaments and muscle structures were considered within the model. Muscle forces were calculated using a variant of the computed muscle control algorithm. PF and tibiofemoral (TF) joints were modeled with six degrees of freedom by implementing a polygon-contact model, enabling roll-glide kinematics. Relative to the reference model, we analyzed six patellar component alignments: superior-inferior position, mediolateral position, patella spin, patella tilt, flexion-extension and thickness. The effect of each configuration was evaluated by taking the root-mean-square error (RMSE) of the PF contact force, patellar shift and patellar tilt with respect to the reference model along knee flexion angle.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 128 - 128
1 Apr 2019
Kebbach M Geier A Darowski M Krueger S Schilling C Grupp TM Bader R
Full Access

Introduction

Total knee replacement (TKR) is an established and effective surgical procedure in case of advanced osteoarthritis. However, the rate of satisfied patients amounts only to about 75 %. One common cause for unsatisfied patients is the anterior knee pain, which is partially caused by an increase in patellofemoral contact force and abnormal patellar kinematics. Since the malpositioning of the tibial and the femoral component affects the interplay in the patellofemoral joint and therefore contributes to anterior knee pain, we conducted a computational study on a cruciate-retaining (CR) TKR and analysed the effect of isolated femoral and tibial component malalignments on patellofemoral dynamics during a squat motion.

Methods

To analyse different implant configurations, a musculoskeletal multibody model was implemented in the software Simpack V9.7 (Simpack AG, Gilching, Germany) from the SimTK data set (Fregly et al.). The musculoskeletal model comprised relevant ligaments with nonlinear force-strain relation according to Wismans and Hill-type muscles spanning the lower extremity. The experimental data were obtained from one male subject, who received an instrumented CR TKR. Muscle forces were calculated using a variant of the computed muscle control algorithm. To enable roll-glide kinematics, both tibio- and patellofemoral joint compartments were modelled with six degrees of freedom by implementing a polygon-contact-model representing the detailed implant surfaces. Tibiofemoral contact forces were predicted and validated using data from experimental squat trials (SimTK). The validated simulation model has been used as reference configuration corresponding to the optimal surgical technique. In the following, implant configurations, i.e. numerous combinations of relative femoral and tibial component alignment were analysed: malposition of the femoral/tibial component in mediolateral (±3 mm) and anterior-posterior (±3 mm) direction.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 48 - 48
1 Apr 2018
Kebbach M Grawe R Geier A Winter E Kluess D Woernle C Bader R
Full Access

Introduction

Despite decades of clinical research in artificial joints and underlying failure mechanisms, systematical and reproducible identification of reasons for complications in total knee replacements (TKR) remains difficult. Due to the complex dynamic interaction of implant system and biological situs, malfunction eventually leading to failure is multifactorial and remains not fully understood. The aim of present study was to evaluate different TKR designs and positions with regard to joint kinematics and stability under dynamic conditions by using a robot-based hardware-in-the-loop (HiL) setup.

Material & methods

An industrial 6-axis robot with 6-axis force-torque sensor mounted into its end-effector moved and loaded real, commercially available TKR (bicondylar, cruciate-retaining) that were in virtual interaction with a subject-specific computational multibody model representing the anatomical situs of the knee joint while performing passive seated deep knee flexion. The subject-specific musculoskeletal multibody model (MMB) included rigid bones of the lower right extremity. Bone and cartilage geometries were reconstructed from MRT/ CT data sets preserving anatomical landmarks and allowing for the calculation of inertial properties. M. quadriceps femoris was modeled as single passive tensile force elements. Knee ligaments were modelled as elastic spring elements with a nonlinear force-displacement characteristic. Providing the flexion angle, the robot moved and loaded the mounted femoral implant component with respect to the tibial component while being in continuous interaction with the MMB. Several influencing parameters like implant position (internal/external rotation, varus/valgus alignment) and design (fixed vs. mobile bearing, tibia-insert height) as well as ligament insufficiency and joint loading on joint kinematics and stability was systematically analysed.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 26 - 26
1 May 2016
Mauck J Kebbach M Schulze C Bader R Kluess D
Full Access

Introduction

The influence of the bone mineral density (BMD) on the mechanical behavior of bones can be examined using computer tomography (CT) data and finite element (FE) simulations, because the BMD correlates with the Hounsfield scale (HU) of the CT data. Therefor the material mapping strategy, which is required to assign the HU values to the FE mesh, is of crucial importance. In this study a nodal mapping strategy was analyzed concerning its sensitivity towards FE mesh parameters and an averaging of HU values from the area around the respective nodes.

Method

The FE simulation is based on CT data of a human proximal femur. Once the bone shape was reconstructed, the resulting model was meshed with quadratic tetrahedral elements in ABAQUS/CAE and all nodes were assigned an HU value from the CT data by using the respective node coordinates. In this process, the mesh density, the threshold, which could be used to exclude connective tissue and fat from the material mapping process, the considered volume around the nodes and the method of averaging were varied. The material assignment was realized by an HU value dependent, linear elastic material definition. The femur model was clamped at the level of the isthmus and a displacement of 0.5 mm was applied at the femoral head. The evaluation was based on the resulting reaction forces.