Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 371 - 371
1 Mar 2013
Zingde S Leszko F Sharma A Howser C Meccia B Mahfouz M Dennis D Komistek R
Full Access

INTRODUCTION

In-vivo data pertaining to the actual cam-post engagement mechanism in PS and Bi-Cruciate Stabilized (BCS) knees is still very limited. Therefore, the objective of this study was to determine the cam-post mechanism interaction under in-vivo, weight-bearing conditions for subjects implanted with either a Rotating Platform (RP) PS TKA, a Fixed Bearing (FB) PS TKA or a FB BCS TKA.

METHODS

In-vivo, weight-bearing, 3D knee kinematics were determined for eight subjects (9 knees) having a RP-PS TKA (DePuy Inc.), four subjects (4 knees) with FB-PS TKA (Zimmer Inc.), and eight subjects (10 knees) having BCS TKA (Smith&Nephew Inc.), while performing a deep knee bend. 3D-kinematics was recreated from fluoroscopic images using a previously published 3D-to-2D registration technique (Figure 1). Images from full extension to maximum flexion were analyzed at 10° intervals. Once the 3D-kinematics of implant components was recreated, the cam-post mechanism was scrutinized. The distance between the interacting surfaces was monitored throughout flexion and the predicted contact map was calculated.