header advert
Results 1 - 2 of 2
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 108 - 108
10 Feb 2023
Guo J Blyth P Clifford K Hooper N Crawford H
Full Access

Augmented reality simulators offer opportunities for practice of orthopaedic procedures outside of theatre environments. We developed an augmented reality simulator that allows trainees to practice pinning of paediatric supracondylar humeral fractures (SCHF) in a radiation-free environment at no extra risk to patients. The simulator is composed of a tangible child's elbow model, and simulated fluoroscopy on a tablet device. The treatment of these fractures is likely one of the first procedures involving X-ray guided wire insertion that trainee orthopaedic surgeons will encounter. This study aims to examine the extent of improvement simulator training provides to real-world operating theatre performance.

This multi-centre study will involve four cohorts of New Zealand orthopaedic trainees in their SET1 year. Trainees with no simulator exposure in 2019 - 2021 will form the comparator cohort. Trainees in 2022 will receive additional, regular simulator training as the intervention cohort. The comparator cohort's performance in paediatric SCHF surgery will be retrospectively audited using routinely collected operative outcomes and parameters over a six-month period. The performance of the intervention cohorts will be collected in the same way over a comparable period. The data collected for both groups will be used to examine whether additional training with an augmented reality simulator shows improved real-world surgical outcomes compared to traditional surgical training. This protocol has been approved by the University of Otago Health Ethics committee, and the study is due for completion in 2024.

This study is the first nation-wide transfer validity study of a surgical simulator in New Zealand. As of September 2022, all trainees in the intervention cohort have been recruited along with eight retrospective trainees via email. We present this protocol to maintain transparency of the prespecified research plans and ensure robust scientific methods. This protocol may also assist other researchers conducting similar studies within small populations.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 13 - 13
1 Jul 2020
Schaeffer E Hooper N Banting N Pathy R Cooper A Reilly CW Mulpuri K
Full Access

Fractures through the physis account for 18–30% of all paediatric fractures, leading to growth arrest in 5.5% of cases. We have limited knowledge to predict which physeal fractures result in growth arrest and subsequent deformity or limb length discrepancy. The purpose of this study is to identify factors associated with physeal growth arrest to improve patient outcomes.

This prospective cohort study was designed to develop a clinical prediction model for growth arrest after physeal injury. Patients < 1 8 years old presenting within four weeks of injury were enrolled if they had open physes and sustained a physeal fracture of the humerus, radius, ulna, femur, tibia or fibula. Patients with prior history of same-site fracture or a condition known to alter bone growth or healing were excluded. Demographic data, potential prognostic indicators and radiographic data were collected at baseline, one and two years post-injury.

A total of 167 patients had at least one year of follow-up. Average age at injury was 10.4 years, 95% CI [9.8,10.94]. Reduction was required in 51% of cases. Right-sided (52.5%) and distal (90.1%) fractures were most common. After initial reduction 52.5% of fractures had some form of residual angulation and/or displacement (38.5% had both). At one year follow-up, 34 patients (21.1%) had evidence of a bony bridge on plain radiograph, 10 (6.2%) had residual angulation (average 12.6°) and three had residual displacement. Initial angulation (average 22.4°) and displacement (average 5.8mm) were seen in 16/34 patients with bony bridge (48.5%), with 10 (30.3%) both angulated and displaced. Salter-Harris type II fractures were most common across all patients (70.4%) and in those with bony bridges (57.6%). At one year, 44 (27.3%) patients had evidence of closing/closed physes.

At one year follow-up, there was evidence of a bony bridge across the physis in 21.1% of patients on plain film, and residual angulation and/or displacement in 8.1%. Initial angulation and/or displacement was present in 64.7% of patients showing possible evidence of growth arrest. The incidence of growth arrest in this patient population appears higher than past literature reports. However, plain film is an unreliable modality for assessing physeal bars and the true incidence may be lower. A number of patients were approaching skeletal maturity at time of injury and any growth arrest is likely to have less clinical significance in these cases. Further prospective long-term follow-up is required to determine the true incidence and impact of growth arrest.