header advert
Results 1 - 3 of 3
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 94 - 94
1 Feb 2020
Hagio K Akiyama K Aikawa K Saito M
Full Access

Introduction

In our institution, we started to perform THA with SuperPATH approach, including preservation of soft tissue around the hip (James Chow et al. Musculoskelet Med 2011) since July 2014, aiming for fast recovery and prevention of hip dislocation. For minimally-invasive approaches, however, there have been a few reports on malalignment of the implants related to shortage of operative field. The purpose of this study is to examine the short-term results of THA using SuperPATH, especially implant alignment.

Materials and methods

We performed a study of 45 patients (45 hips) with osteoarthritis of the hip joint who had a THA with SuperPATH approach. There were 8 men and 37 women with an average age of 73 years, which were minimally 24 months followed. Dynasty Bioform cup and Profemur Z stem (Microport Orthopaedics) were used for all cases. Patients were clinically assessed with Merle d'Aubigne score and complications. Implant alignment and stability were radiologically evaluated by annual X-ray and CT acquired two months after surgery.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 18 - 18
1 Apr 2019
Hagio K Saito M Akiyama K Abe H Aikawa K
Full Access

Introduction

Many minimally-invasive approaches have been described in an effort to improve short-term results of total hip arthroplasty (THA), aiming for fast recovery and prevention of dislocation. In our institution, we started to perform THA with SuperPATH approach, including preservation of soft tissue around the hip (James Chow et al. Musculoskelet Med 2011) since July 2014. The purpose of this study is to examine the short-term results of THA using SuperPATH, especially treatment progress of rehabilitation.

Materials and methods

We performed a study of 30 patients (30 hips) with osteoarthritis of the hip joint who had a THA with SuperPATH approach. There were 4 men and 26 women with an average age of 71 years, which were followed up for 24 months. Patients were clinically assessed with Merle d'Aubigne score, postoperative hip pain during walking by Numerical Rating Scale (NRS:0–10), complications and treatment progress of rehabilitation in regard to moving and activities of daily living. Implant alignment and stability were radiologically evaluated by annual X-ray and CT acquired two months after surgery.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 190 - 190
1 Mar 2013
Hagio K Saito M Tazaki N Aikawa K
Full Access

Background

Few clinical hip score include toe-reach motion after THA (put-on-socks, shoe-ties, nail-cuttingãf»ãf»ãf») Some reports have shown whether THA patients can put on socks or not in daily activity, and not shown how they can do it. The purpose of this study is to investigate real pattern of put-on-socks motion in daily activities after THA, and to evaluate the characteristics of the motion quantitatively.

Materials and Methods

1st step

Reviewing clinical chart, we investigated highly frequent pattern in wearing socks motion that would cause dislocation in ADL in 100 patients with normal lower extremities except for hip more than one year after THA, then, we classified the motion pattern.

2nd step:

Using an optical 3-D motion analysis we measured necessary angles on trunk, hip, knee and ankle in 10 healthy volunteers and 20 THA subjects one month postoperatively, while the volunteers or THA subjects make such frequent patterns of movement based on the 1st step. ALL joint angle was defined as “zero” in static standing position. We also compared the angles in THA subjects with those of the volunteers.

Motion analysis technology with optical sensors is;

Track 30 infrared reflection sensors on subjects' body surface with infrared camera in the requested motions (MAC3D system, Motion Analysis, USA).

Collect 3-D coordinates of 30 sensors' positions over time during subjects' motions.

Calculate joint angle, driving 3-D installed skeletal model combined with motion data collected in 2) on display over time (SIMM, Musculographics).