header advert
Results 1 - 2 of 2
Results per page:
The Bone & Joint Journal
Vol. 99-B, Issue 10 | Pages 1290 - 1297
1 Oct 2017
Devane PA Horne JG Foley G Stanley J

Aims

This paper describes the methodology, validation and reliability of a new computer-assisted method which uses models of the patient’s bones and the components to measure their migration and polyethylene wear from radiographs after total hip arthroplasty (THA).

Materials and Methods

Models of the patient’s acetabular and femoral component obtained from the manufacturer and models of the patient’s pelvis and femur built from a single computed tomography (CT) scan, are used by a computer program to measure the migration of the components and the penetration of the femoral head from anteroposterior and lateral radiographs taken at follow-up visits. The program simulates the radiographic setup and matches the position and orientation of the models to outlines of the pelvis, the acetabular and femoral component, and femur on radiographs. Changes in position and orientation reflect the migration of the components and the penetration of the femoral head. Validation was performed using radiographs of phantoms simulating known migration and penetration, and the clinical feasibility of measuring migration was assessed in two patients.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 102 - 102
2 Jan 2024
Ambrosio L
Full Access

In the last decades, the use of artificial intelligence (AI) has been increasingly investigated in intervertebral disc degeneration (IDD) and chronic low back pain (LBP) research. To date, several AI-based cutting-edge technologies, such as computer vision, computer-assisted diagnosis, decision support system and natural language processing have been utilized to optimize LBP prevention, diagnosis, and treatment. This talk will provide an outline on contemporary AI applications to IDD and LBP research, with a particular attention towards actual knowledge gaps and promising innovative tools