header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 34 - 34
2 Jan 2024
Karoichan A Tabrizian M
Full Access

Mesenchymal stem cells-derived extracellular vesicles (MSC-EVs) have great promise in the field of orthopaedic nanomedicine due to their regenerative, as well as immunomodulatory and anti-inflammatory properties. Researchers are interested in harnessing these biologically sourced nanovesicles as powerful therapeutic tools with intrinsic bioactivity to help treat various orthopaedic diseases and defects. Recently, a new class of EV mimetics has emerged known as nanoghosts (NGs). These vesicles are derived from the plasma membrane of ghost cells, thus inheriting the surface functionalities and characteristics of the parent cell while at the same time allowing for a more standardized and reproducible production and significantly greater yield when compared to EVs. This study aims to investigate and compare the osteoinductive potential of MSC-EVs and MSC-NGs in vitro as novel tools in the field of bone tissue engineering and nanomedicine. To carry out this investigation, MSC-EVs were isolated from serum-free MSC conditioned media through differential ultracentrifugation. The remaining cells were treated with hypotonic buffer to produce MSC-ghosts that were then homogenized and serially extruded through 400 and 200 nm polycarbonate membranes to form the MSC-NGs. The concentration, size distribution, zeta potential, and protein content of the isolated nanoparticles were assessed. Afterwards, MSCs were treated with either MSC-EVs or MSC-NGs under osteogenic conditions, and their differentiation was assessed through secreted ALP assay, qPCR, and Alizarin Red mineralization staining. Isolation of MSC-EVs and MSC-NGs was successful, with relatively similar mean diameter size and colloidal stability. No effect on MSC viability and metabolic activity was observed with either treatment. Both MSC-EV and MSC-NG groups had enhanced osteogenic outcomes compared to the control; however, a trend was observed that suggests MSC-NGs as better osteoinductive mediators compared to MSC-EVs.

Acknowledgements: The authors would like to acknowledge Canada Research Chair – Tier 1 in Regenerative Medicine and Nanomedicine, CHRP, and McGill's Faculty of Dental Medicine and Oral Health Sciences for their financial support.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 72 - 72
2 Jan 2024
Agnes C Murshed M Willie B Tabrizian M
Full Access

Critical size bone defects deriving from large bone loss are an unmet clinical challenge1. To account for disadvantages with clinical treatments, researchers focus on designing biological substitutes, which mimic endogenous healing through osteogenic differentiation promotion. Some studies have however suggested that this notion fails to consider the full complexity of native bone with respect to the interplay between osteoclast and osteoblasts, thus leading to the regeneration of less functional tissue2. The objective of this research is to assess the ability of our laboratory's previously developed 6-Bromoindirubin-3’-Oxime (BIO) incorporated guanosine diphosphate crosslinked chitosan scaffold in promoting multilineage differentiation of myoblastic C2C12 cells and monocytes into osteoblasts and osteoclasts1, 3, 4. BIO addition has been previously demonstrated to promote osteogenic differentiation in cell cultures5, but implementation of a co-culture model here is expected to encourage crosstalk thus further supporting differentiation, as well as the secretion of regulatory molecules and cytokines2.

Biocompatibility testing of both cell types is performed using AlamarBlue for metabolic activity, and nucleic acid staining for distribution. Osteoblastic differentiation is assessed through quantification of ALP and osteopontin secretion, as well as osteocalcin and mineralization staining. Differentiation into osteoclasts is verified using SEM and TEM, qPCR, and TRAP staining.

Cellular viability of C2C12 cells and monocytes was maintained when cultured separately in scaffolds with and without BIO for 21 days. Both scaffold variations showed a characteristic increase in ALP secretion from day 1 to 7, indicating early differentiation but BIO-incorporated sponges yielded higher values compared to controls. SEM and TEM imaging confirmed initial aggregation and fusion of monocytes on the scaffold's surface, but BIO addition appeared to result in smoother cell surfaces indicating a change in morphology. Late-stage differentiation assessment and co-culture work in the scaffold are ongoing, but initial results show promise in the material's ability to support multilineage differentiation.

Acknowledgements: The authors would like to acknowledge the financial support of the Collaborative Health Research Program (CHRP) through CIHR and NSERC, as well as Canada Research Chair – Tier 1 in Regenerative Medicine and Nanomedicine, and the FRQ-S.