header advert
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 10 - 10
1 May 2016
MacDonald D Schachtner J Chen A Cates H Klein G Mont M Kraay M Malkani A Lee G Hamlin B Rimnac C Kurtz S
Full Access

Introduction

Highly crosslinked polyethylene (HXLPE) was clinically introduced approximately a decade and a half ago to reduce polyethylene wear rates and subsequent osteolysis. Clinical and radiographic studies have repeatedly shown increased wear resistance, however concerns of rim oxidation and fatigue fracture remain. Although short to intermediate term retrieval studies of these materials are available, the long-term behavior of these materials remains unclear.

Methods

Between 2000 and 2015, 115 1st generation HXLPE acetabular liners implanted for 5 or more years were collected and analyzed as part of an ongoing, multi-institutional orthopaedic implant retrieval program. There were two material cohorts based on thermal processing (annealed (n=45) and remelted (n=70)). Each cohort was stratified into two more cohorts based on implantation time (5 – 10 years and >10 years). For annealed components, the intermediate-term liners (n=30) were implanted on average (±SD) for 7.3 ± 1.7 years while the long-term liners (n=15) were implanted for 11.3 ± 1.8 years. For remelted components, the intermediate-term liners (n=59) were implanted on average (±SD) for 7.2 ± 1.3 years while the long-term liners (n=11) were implanted for 11.3 ± 1.2 years. For each cohort, the predominant revision reasons were loosening, instability, and infection (Figure 1). Short-term liners (in-vivo <5ys) from previous studies were analyzed using the same protocol for use as a reference.

For oxidation analysis, thin slices (∼200 μm) were taken from the superior/inferior axis and subsequently boiled in heptane for 6 hours to remove absorbed lipids that may interfere with the oxidation analysis. 3mm line profiles (in 100μm increments) were taken perpendicular to the surface at each region of interest. Oxidation indices were calculated according to ASTM 2102. Penetration was measured directly using a calibrated micrometer (accuracy=0.001mm).