header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 40 - 40
1 Nov 2021
Pattappa G Reischl F Jahns J Lang S Zellner J Docheva D Angele P
Full Access

Introduction and Objective

The meniscus is composed of two distinct regions, a vascular outer zone and an avascular inner zone. Due to vascularization, tears within the vascular zone can be treated by suturing. However, tears in the avascular zone have a poor healing capacity and partial meniscectomy is used to prevent further pain, although this leads to early osteoarthritis. Previous studies have demonstrated that the vascular zone contains a progenitor population with multilineage differentiation potential. Isolation and propagation of these progenitors can be used to develop cell-based therapies for treating meniscal defects. In vivo, the meniscus resides under a low oxygen environment, also known as physioxia (2–7% oxygen) and previous work suggests that it promotes the meniscal phenotype. The objective of the study was to isolate progenitor populations from both meniscus regions and to examine their clonogenecity and differentiation potential under both hyperoxia (20% oxygen) and physioxia (2% oxygen). We hypothesize that physioxia will have a beneficial effect on colony formation and trilineage differentiation of meniscal cells.

Materials and Methods

Human meniscus (n =4; mean age: 64 + 6) tissue was split into vascular and avascular regions, finely cut into small pieces and then sequentially digested in pronase (70U/mL) and collagenase (200U/mL) at 370C. Avascular and vascular meniscus cells were counted and split equally for expansion under hyperoxia and physioxia at a seeding density of 5 × 103 cells/cm2. At passage 1, cells were seeded at 2, 5 and 20 cells/cm2 in 10cm dishes for observing colony formation using crystal violet assay. At passage 3, vascular and avascular meniscus cells were differentiated towards the chondrogenic, osteogenic and adipogenic lineage. Chondrogenesis was evaluated using DMMB staining for GAG deposition, osteogenesis was assessed using Alizarin Red staining for calcium deposition, whilst adipogenesis was observed using Oil-Red-O staining for fat droplets.