header advert
Results 1 - 9 of 9
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 51 - 51
1 Feb 2021
Smith L Cates H Freeman M Nachtrab J Komistek R
Full Access

Background

While posterior cruciate retaining (PCR) implants are a more common total knee arthroplasty (TKA) design, newer bi-cruciate retaining (BCR) TKAs are now being considered as an option for many patients, especially those that are younger. While PCR TKAs remove the ACL, the BCR TKA designs keep both cruciate ligaments intact, as it is believed that the resection of the ACL greatly affects the overall kinematic patterns of TKA designs. Various fluoroscopic studies have focused on determination of kinematics but haven't defined differentiators that affect motion patterns. This research study assesses the importance of the cruciate ligaments and femoral geometry for Bi-Cruciate Retaining (BCR) and Posterior Cruciate Retaining (PCR) TKAs having the same femoral component, compared to the normal knee.

Methods

The in vivo 3D kinematics were determined for 40 subjects having a PCR TKA, 10 having a BCR TKA, and 10 having a normal knee, in a retrospective study. All TKA subjects had the same femoral component. All subjects performed a deep knee bend under fluoroscopic surveillance. The kinematics were determined during early flexion (ACL dominant), mid flexion (ACL/PCL transition) and deep flexion (PCL dominant).


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 93 - 93
1 Feb 2020
Ta M Nachtrab J LaCour M Komistek R
Full Access

Introduction

Conventional hip radiographs allow surgeons, during preoperative planning, to make important decisions. Size and location of implants are routinely measured by overlaying schematics of the implanted components onto preoperative radiographs. Most currently available planning tools are in two-dimensions (2D), using X-ray images and 2D templates of the implants. Determination of the ideal component size requires two radiographic views of the femur: the anterior-posterior (AP) and the lateral direction. The surgeon uses this information to determine component sizes. Even though this approach has been used for many years leading to very good results, this manual process potentially carries multiple shortcomings. The biggest issue with the AP X-ray image is the fact that it is 2D in nature while the measurement's objective is to obtain three-dimensional (3D) parameters.

Objective

The objective of this study is to derive a methodology to automatically select correct THA implant sizes while keeping the anatomical center of each specific patient within a forward solution model (FSM) that predicts post-operative outcomes.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 61 - 61
1 Feb 2020
LaCour M Nachtrab J Ta M Komistek R
Full Access

Introduction

Traditionally, conventional radiographs of the hip are used to assist surgeons during the preoperative planning process, and these processes generally involve two-dimensional X-ray images with implant templates. Unfortunately, while this technique has been used for many years, it is very manual and can lead to inaccurate fits, such as “good” fits in the frontal view but misalignment in the sagittal view. In order to overcome such shortcomings, it is necessary to fully describe the morphology of the femur in three dimensions, therefore allowing the surgeon to successfully view and fit the components from all possible angles.

Objective

The objective of this study was to efficiently describe the morphology of the proximal femur based on existing anatomical landmarks for use in surgical planning and/or forward solution modeling.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 81 - 81
1 Feb 2020
Dessinger G Nachtrab J LaCour M Komistek R
Full Access

Introduction

Untreated hip osteoarthritis is a debilitating condition leading to pain, bone deformation, and limited range of motion. Unfortunately, studies have not been conducted under in vivo conditions to determine progressive kinematics variations to a hip joint from normal to pre-operative and post-operative THA conditions. Therefore, the objective was this study was to quantify normal and degenerative hip kinematics, compared to post-operative hip kinematics.

Methods

Twenty unique subjects were analyzed; 10 healthy, normal subjects and 10 degenerative, subjects analyzed pre-operatively and then again post-operatively after receiving a THA. During each assessment, the subject performed a gait (stance and swing phase) activity under mobile, fluoroscopic surveillance. The normal and diseased subjects had CT scans in order to acquire bone geometry while implanted subjects had corresponding CAD models supplied. Femoral head and acetabular cup centers were approximated by spheres based on unique geometries while the component centers were pre-defined as the center of mass. These centers were used to compare femoral head sliding magnitudes on the acetabular cup during the activity for all subjects. Subjects were noted to have separation with changes in center magnitudes of more than 1 mm during gait. Utilizing 3D-to-2D registration techniques, the hip joint kinematics were derived and assessed. This allowed for visualization of normal subject positioning, pre-op bone deterioration, and implant placement within the bones.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 94 - 94
1 Feb 2020
Ta M Nachtrab J LaCour M Komistek R
Full Access

Introduction

Obtaining accurate anatomical landmarks may lead to a better morphologic understanding, but this is challenging due to the variation of bony geometries. A manual approach, non-ideal for surgeons or engineers, requires a CT or MRI scan, and landmarks must be chosen based on the 3D representation of the scanned data. Ideally, anatomical landmarking is achieved using either a statistical shape model or template matching. Statistical modeling approaches require multitude of training data to capture population variation. Prediction of anatomical landmarks through template matching techniques has also been extensively investigated. These techniques are based on the minimization or maximization of an objective or cost function. As is the nature of non-rigid algorithms, these techniques can fail in the local maxima if the template and new bone models have noise or outliers. Therefore, a combination of rigid and non-rigid registration techniques is needed, in order to obtain accurate anatomical landmarks and improve the prediction process.

Objective

The objective of this study was to find a way to efficiently obtain accurate anatomical landmarks based on an existing template's landmarks for use in a forward solution model (FSM) to predict patient specific mechanics.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 62 - 62
1 Feb 2020
LaCour M Nachtrab J Ta M Komistek R
Full Access

Introduction

Previous research defines the existence of a “safe zone” (SZ) pertaining to acetabular cup implantation during total hip arthroplasty (THA). It is believed that if the cup is implanted at 40°±10° inclination and 15°±10° anteversion, risk of dislocation is reduced. However, recent studies have documented that even when the acetabular cup is placed within the SZ, high incidence dislocation and instability remains due to the combination of patient-specific configuration, cup diameter, head size, and surgical approach. The SZ only investigates the angular orientation of the cup, ignoring translational location. Translational location of the cup can cause a mismatch between anatomical hip center and implanted cup center, which has not been widely explored.

Objective

The objective of this study is to define a zone within which the implanted joint center can be altered with respect to the anatomical joint center but will not increase the likelihood of post-operative hip separation or dislocation.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 95 - 95
1 Feb 2020
Ta M Nachtrab J LaCour M Komistek R
Full Access

Summary

The mathematical model has proven to be highly accurate in measuring leg length before and after surgery to determine how leg length effects hip joint mechanics.

Introduction

Leg length discrepancy (LLD) has been proven to be one of the most concerning problems associated with total hip arthroplasty (THA). Long-term follow-up studies have documented the presence of LLD having direct correlation with patient dissatisfaction, dislocation, back pain, and early complications. Several researchers sought to minimize limb length discrepancy based on pre-operative radiological templating or intra-operative measurements. While often being a common occurrence in clinical practice to compensate for LLD intra-operatively, the center of rotation of the hip joint has often changes unintentionally due to excessive reaming. Therefore, the clinical importance of LLD is still difficult to solve and remains a concern for clinicians.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 64 - 64
1 Apr 2019
Dessinger G Ta M Zeller I Nachtrab J Sharma A Komistek R
Full Access

Introduction

Many fluoroscopic studies on total knee arthroplasty (TKA) have identified kinematic variabilities compared to the normal knee, with many subjects experiencing paradoxical motion patterns. The intent of this research study was to investigate the results of customized-individual-made (CIM) and off-the-shelf (OTS) PS and PCR TKA to determine kinematic variabilities and to assess these kinematic patterns with those previously documented for the normal knee.

Methods

In vivo kinematics were assessed for 151 subjects – 44 with CIM-PCR, 75 with OTS-PCR, 14 with CIM-PS, and 18 with OTS-PS TKA – using a mobile fluoroscopic system and then evaluated using a 3D-2D registration technique. This was a multicenter evaluation so the group of implants were implanted by two surgeons and selected based on recruitment criteria. Each subject performed a deep knee bend activity (DKB) while under fluoroscopy. The kinematics assessed for each subject were condyle translation (LAP/MAP) and rotation (axial rotation).


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 80 - 80
1 Apr 2019
Nachtrab J Dessinger G Khasian M LaCour M Sharma A Komistek R
Full Access

Introduction

Hip osteoarthritis can be debilitating, often leading to pain, poor kinematics and limiting range of motion. While the in vivo kinematics of a total hip arthroplasty (THA) are well documented, there is limited information pertaining to the kinematics of native, non-arthritic (normal) hips and degenerative hips requiring a THA.

The objective of this study is to evaluate and compare the in vivo kinematics of the normal hip with pre-operative, degenerative hips and post-operative THA.

Methods

Twenty subjects, ten having a normal hip and ten having a pre-operative, degenerative hip that were analyzed before surgery and then post-operatively after receiving a THA. Each subject was asked to perform gait while under mobile fluoroscopic surveillance. Normal and pre-operative degenerative subjects underwent a CT scan so that 3D models of their femur and pelvis could be created. Using 3D-to-2D registration techniques, the hip joint kinematics were derived and assessed.

Femoral head and acetabular cup rotational centers were derived using spheres. The centers of these spheres were used to obtain the femoral head sliding distance on the acetabular cup during the activity. The patient-specific reference femoral head values were obtained from the subjects’ CT scans in a non-weight bearing situation.