header advert
Results 1 - 1 of 1
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 587 - 587
1 Dec 2013
Wimmer M Knowlton C Pourzal R McEwen P Andriacchi T
Full Access

Introduction:

Many variables contribute to aseptic loosening, and the release of wear particles is a predominant source of late failure. It has been difficult to measure TKA wear quantitatively from retrieved devices; hence, there is a relative paucity of clinically observed TKA wear rates in the literature. Additionally, little is known about patient factors influencing wear rates. This study (a) establishes a clinically relevant TKA wear rate for a cruciate retaining TKA design and (b) relate those wear readings to gait measures of their hosts.

Methods:

34 revision- and 11 postmortem-retrieved MG II tibial PE-components were included in the analysis. Wear scars on the articulating surface of the insert were digitized under light microscopy. The geometry of the surfaces was mapped at 100×100 μm using a low-incidence laser. Autonomous mathematical reconstruction of the original surface was used [1], and linear penetration on the medial and lateral surfaces and total wear volume were calculated (Fig-1).

For five implants, gait data recorded during 1.5 years after surgery were available. Gait studies were performed using a three-dimensional optoelectronic system for motion capture. Joint kinematics and kinetics were calculated using a six-marker model of the lower extremity [2]. All knee moments are reported in Nm, acting externally at the tibia. Potential linear relationships between wear and moment characteristics were investigated.