header advert
Results 1 - 3 of 3
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIX | Pages 86 - 86
1 Jul 2012
da Assunçã;o R Pelletier M Lau A Marsh R Bruce WM Walsh W
Full Access

Introduction

The role of porosity in the longevity of polymethylmethacrylate (PMMA) bone cement mantles remains unclear, although porosity reduction is probably desirable. It is not known whether pore patterns, pore distribution or pore morphology contribute to failure, since it is difficult to assess these features with traditional techniques. We used a novel microtomographic technique to quantitatively and qualitatively assess porosity in PMMA cements of differing viscosities to establish whether pore distribution can be effectively assessed and to document any differences in porosity (in both quantity, distribution and morphology). Each cement was also examined with and without the addition of vacuum, since this is thought to reduce porosity.

Methods and materials

Four PMMA bone cements of different viscosities (three of the same brand and the fourth chosen due to its popularity) were prepared and moulded according to established protocols (ASTM F451-99a), with and without the addition of vacuum. 25 samples per group (200 total) were prepared and densities for each sample calculated using Archimedes' principle. Four samples per group (total 32) were randomly selected for further analysis. These samples underwent micro-computer tomography (micro-CT) at a magnification of 20× and slice thickness of 13.67μm and reconstructed images were analysed with in-house developed software to measure pore size and volume. Results were analysed and compared with the two-sample T-test assuming significance at P<0.05. Qualitative assessment of pore character and distribution was made using three dimensional (3D) reconstruction.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 363 - 363
1 Oct 2006
Marsh R Emeagi C Goodship A Amrich M Blunn G
Full Access

Introduction: The use of uncemented arthroplasty in joint replacement surgery requires osseointegration of the prosthesis to maximise function and longevity. It has been demonstrated that osteoblast-like cells will preferentially proliferate, differentiate and produce mineralised matrix in pits and grooves on non-biological surfaces, of similar dimensions to those of Howslip’s lacunae produced by osteoclasts in vitro. The hypotheses of this study were that a photochemically etched titanium alloy surface would 1) induce proliferation and differentiation in osteoblast-like cells; 2) induce osteoblastic differentiation of human mesenchymal stem cells and 3) induce greater bone to implant contact in a caprine model.

Methods: Three microgrooved titanium alloy surfaces (fine, medium & coarse) were created by photochemical etching, with dimensions of 200 to 515 microns. Human Mesenchymal stem cells (MSC) and Human Osteosarcoma (HOS) cells (TE-85) were seeded onto these surfaces and cultured in standard media; in the case of MSC, with and without the addition of osteogenic supplements. At intervals of time each surface and cell type were assessed for proliferation by Alamar blue assay and osteoblastic differentiation by Alkaline Phosphatase expression. A polished titanium surface was used as a control. A plate of each surface dimension was placed into a femoral condyle of ten adult male goats. The animals were euthanased at 6 and 12 weeks post-implantation. The specimens were histologically processed and examined under light and backscattered electron microscopy to establish the percentage of bone to implant contact and the presence of new bone within the grooves.

Results: In vitro, all cells showed an increase in proliferation with time, the greatest occurring on the coarse surface. Alkaline phosphatase expression showed a rise with time on all surfaces, the greatest being on the coarse surface seeded with HOS cells (p< 0.05). MSC could not be induced to differentiate to an osteogenic lineage by these surface textures alone. On addition of osteogenic supplements their results followed the trends of HOS cells. In vivo, histomorphometric analysis showed significantly greater bone implant contact on the coarse surface at both 6 and 12 weeks (p< 0.05). In a number of cases there were signs of osteogenesis occurring deep within the pits and grooves.

Discussion: This study confirms that a photochemically etched surface topography mimicking that created by osteoclasts will increase the proliferation and differentiation of osteoblastic cells in vitro. The rate of differentiation of these cells increased significantly in relation to the size of the grooves. When implanted in vivo these same surfaces were shown to support osseointegration. This surface has the potential to improve the function of uncemented arthroplasties in the future.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages - 12
1 Mar 2002
Connolly C Dickson G Li G Marsh R
Full Access

NSAID’s cycle-oxygenase (COX) inhibitory characteristics are either non-specific, COX-1 preferential or recently COX-2 preferential. NSAID’s have been widely reported to delay fracture repair however the mechanism of this affect remains unclear.

Left femoral osteotomies were performed in 54 male 3 month old CFLP mice immobilised with uniplanar external fixators. 27 externally fixated mice received 4mg/kg meloxicam,b.d., from the day of surgery, by gavage. The control group received the carrier alone. 18 mice had external fixators applied to intact femurs and received no meloxicam as a sham control. Individual mouse movement, was quantified each day by autocounters using an infrared beam motion detection system. Plasma was obtained by right ventricular aspiration under anaesthesia on days 2,4,8 and 16-post surgery.

A validated bioassay and a slot blotting immunoassay were employed to determine the plasma concentration of 11-6 and relative TNF-α levels to normal mouse serum.

TNF-α levels peaked at day 4 and were suppressed by COX-2 inhibition. Both the control and treatment groups had higher levels of TNF-α than the non-fractured controls. The plasma concentration of 11-6 was elevated by COX-2 inhibition at all time points. The levels of TNF-α and 11-6 correlated in fracture control and treatment groups (Spearman’s 0.039 and 0.002 respectively). The 11-6 plasma concentration correlated to the animal motion in the treatment group alone (Spearman’s 0.017).

As it has been shown that TNF-α induces 11-6 production and that this inhibits TNF-α production a possible model for these interaction is shown below.