header advert
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 18 - 18
1 Oct 2020
Mears SC Severin C Mannen E Stambough J Edwards P Barnes CL
Full Access

Introduction

Clinical examination for stability in knee replacement involves the anterior drawer test. This test has been used to help in the diagnosis of flexion instability when used at 90 degrees and midflexion instability at 30 degrees. We sought to determine the inter-rater reliability of this test when compared to motion capture data.

Methods

10 subjects with previous knee repalcement were examined by four orthopedics knee repalcement surgeons in one setting. Each surgeon evaluated each subject in random order and was blinded from the results of the other surgeons. Each surgeon performed an anterior drawer test at 30 and 90 degrees and graded the instability as 0–5mm, 5–10mm or >10 mm. Anterior posterior translation was measured using motion capture.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 56 - 56
1 Oct 2019
Barnes CL Severin AC Tackett SA Mannen E
Full Access

Introduction

Golf is a recommended form of physical activity for older adults. However, clinicians have no evidence-based research regarding the demands on the hips of older adults during golf. The purpose of our in vivoobservational study was to quantify the hip biomechanics of older adult golfers.

Methods

Seventeen healthy older male golfers(62.2±8.8 years, handicap 8.7±4.9) free from orthopaedic injuries and surgeries volunteered for participation in this IRB-approved study. A 10-camera motion capture system recorded kinematics, and two force plates collected kinetic data. Participants performed eight shots using their own driver. Data processing was performed in Visual3D. The overall range of excursion and three-dimensional net joint moments normalized to body weight for the lead and trail hips were extracted.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 10 - 10
1 Feb 2017
Ali A Mannen E Smoger L Haas B Laz P Rullkoetter P Shelburne K
Full Access

Introduction

Patellar resurfacing affects patellofemoral (PF) kinematics, contact mechanics, and loading on the patellar bone. Patients with total knee arthroplasty (TKA) often exhibit adaptations in movement patterns that may be linked to quadriceps deficiency and the mechanics of the reconstructed knee [1]. Previous comparisons of PF kinematics between dome and anatomic resurfacing have revealed differences in patellar sagittal plane flexion [2], but further investigation of PF joint mechanics is required to understand how these differences influence performance. The purpose of this study was to compare PF mechanics between medialized dome and medialized anatomic implants using subject-specific computational models.

Methods

A high-speed stereo radiography (HSSR) system was used to capture 3D sub-mm measurement of bone and implant motion [3]. HSSR images were collected for 10 TKA patients with Attune® (DePuy Synthes, Warsaw, IN) posterior-stabilized, rotating-platform components, 5 with medialized dome and 5 with medialized anatomic patellar components (3M/7F, 62.5±6.6 years, 2.2±0.6 years post-surgery, BMI: 26.2±3.5 kg/m2), performing two activities of daily living: knee extension and lunge (Figure 1). Relative motions were tracked using Autoscoper (Brown University, Providence, RI) for implant geometries obtained from the manufacturer. A statistical shape model was used to predict the patella and track motions [4].

Subject-specific finite element models of the experiment were developed for all subjects and activities [5]. The model included implant components, patella, quadriceps, patellar tendon, and medial and lateral PF ligaments (Figure 2a). While tibiofemoral kinematics were prescribed based on experimental data, the PF joint was unconstrained. A constant 1000N quadriceps load was distributed among four muscle groups. Soft tissue attachments and pre-strain in PF ligaments were calibrated to match experimental kinematics [5]. Model outputs included PF kinematics, patellar and contact force ratios, patellar tendon angle, and moment arm.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 58 - 58
1 Feb 2017
Kefala V Ali A Mannen E Shelburne K
Full Access

Introduction

Accurate measurement of knee motion is necessary for assessment of natural joint function and in the diagnosis of pathology. In particular, precise knowledge of natural knee mechanics provides useful metrics for comparison to knee function following total knee arthroplasty (TKA). Reported measurements of natural knee kinematics during activities of daily living are rare, and often do not include both tibiofemoral (TF) and patellofemoral (PF) articulations. What's more, most studies record knee motion of younger subjects that are not necessarily representative of the age range associated with degenerative changes and TKA. The purpose of this study was to measure TF and PF kinematics of healthy older adults as they performed activities of daily living, including tasks considered more demanding for the knee [1].

Methods

High speed stereo radiography (HSSR) was used to measure the kinematics of the PF and TF joints. HSSR utilizes two views of the knee to capture 3D sub-mm measurements accurate to within ±0.15 mm in translation and ±0.41° in rotation [2]. Eight healthy subjects (4M/4F, 64.4±8.2 years, BMI: 27.6±4.8 kg/m2) performed six activities of daily living: seated knee extension, lunge, chair rise, gait, pivot and step down (Figure 1). The 3D geometry of the femur, tibia, and patella of each subject was reconstructed from CT and used to track bone motions using Autoscoper (Brown University, Providence RI). Motion of the tibia and patella were reported relative to a coordinate system centered in the posterior condyles of the femur [3]. Average range of motion (ROM) for each DOF was calculated as the difference between the maximum and the minimum value and averaged across the subjects for each activity.