header advert
Results 1 - 4 of 4
Results per page:
Bone & Joint Open
Vol. 2, Issue 2 | Pages 134 - 140
24 Feb 2021
Logishetty K Edwards TC Subbiah Ponniah H Ahmed M Liddle AD Cobb J Clark C

Aims

Restarting planned surgery during the COVID-19 pandemic is a clinical and societal priority, but it is unknown whether it can be done safely and include high-risk or complex cases. We developed a Surgical Prioritization and Allocation Guide (SPAG). Here, we validate its effectiveness and safety in COVID-free sites.

Methods

A multidisciplinary surgical prioritization committee developed the SPAG, incorporating procedural urgency, shared decision-making, patient safety, and biopsychosocial factors; and applied it to 1,142 adult patients awaiting orthopaedic surgery. Patients were stratified into four priority groups and underwent surgery at three COVID-free sites, including one with access to a high dependency unit (HDU) or intensive care unit (ICU) and specialist resources. Safety was assessed by the number of patients requiring inpatient postoperative HDU/ICU admission, contracting COVID-19 within 14 days postoperatively, and mortality within 30 days postoperatively.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 21 - 21
1 Feb 2021
Logishetty K Edwards T Liddle A Dean E Cobb J Clark C
Full Access

Background

In the United Kingdom, over 1 million elective surgeries were cancelled due to COVID-19, resulting in over 1.9 million people now waiting more than 4 months for their procedure – 3x the number last year. To address this backlog, the healthcare service has been asked to develop locally-designed ‘COVID-light’ facilities. In our local system, 822 patients awaited orthopaedic surgery when elective surgery was permitted to resume. The phased return of service required a careful and pragmatic prioritisation of patients, to protect resources, patients, and healthcare workers.

Aims

We aim to describe how the COVID-19 Algorithm for Resuming Elective Surgery (CARES) was used to consider 1) Which type of operation and patient should be prioritised? and 2) Which patients are safe to undergo surgery? The central tenets to this were patient safety, predicted efficacy of the surgery, and delivering compassionate care by considering biopsychosocial factors.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 44 - 44
1 Feb 2021
Edwards T Patel A Szyszka B Coombs A Kucheria R Cobb J Logishetty K
Full Access

Background

Revision total knee arthroplasty (rTKA) is a high stakes procedure with complex equipment and multiple steps. For rTKA using the ATTUNE system revising femoral and tibial components with sleeves and stems, there are over 240 pieces of equipment that require correct assembly at the appropriate time. Due to changing teams, work rotas, and the infrequency of rTKR, scrub nurses may encounter these operations infrequently and often rely heavily on company representatives to guide them. In turn, this delays and interrupts surgical efficiency and can result in error. This study investigates the impact of a fully immersive virtual reality (VR) curriculum on training scrub nurses in technical skills and knowledge of performing a complex rTKA, to improve efficiency and reduce error.

Method

Ten orthopaedic scrub nurses were recruited and trained in four VR sessions over a 4-week period. Each VR session involved a guided mode, where participants were taught the steps of rTKA surgery by the simulator in a simulated operating theatre. The latter 3 sessions involved a guided mode followed by an unguided VR assessment. Outcome measures in the unguided assessment were related to procedural sequence, duration of surgery and efficiency of movement. Transfer of skills was assessed during a pre-training and post-training assessment, where participants completed multi-step instrument selection and assembly using the real equipment. A pre and post-training questionnaire assessed the participants knowledge, confidence and anxiety.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_27 | Pages 12 - 12
1 Jul 2013
Logishetty K Cope A Ferguson J Alvand A Price A Rees J
Full Access

Introduction

Current work-hour restrictions and cost pressures have highlighted the limitations of apprenticeship-based learning, and led to the development of alternative methods to improve the skills of orthopaedic trainees outside of the clinical environment. These methods include using synthetic bones and simulators in the laboratory setting. Educational theory highlights the importance of context for effective learning, yet full-immersion simulation facilities are prohibitively expensive. This study explored the concept of contextualised training day in trauma & orthopaedics.

Methods

Fifteen novice surgeons provided feedback after completing three teaching modules:

OSCE-style Problem-based Learning of Orthopaedic Trauma in the Fracture Clinic Setting, utilising an actor and radiographs to teach history, examination, diagnostic and management skills

The positioning, preparing and draping of a patient, and Examination under anaesthesia (EUA) for arthroscopic knee surgery, utilising an operating table and theatre equipment to teach procedural and examination skills

Simulator based training for diagnostic shoulder and knee arthroscopy; and Bankart repair, utilising arthroscopic stack and synthetic joint models to develop arthroscopic motor skill and procedural knowledge