header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 64 - 64
1 Sep 2012
Rutherford DJ Hubley-Kozey CL Stanish WS
Full Access

Purpose

Whether the presence of knee effusion in individuals with knee osteoarthritis (OA) affects periarticular neuromuscular control during gait and thus the joint loading environment is unknown. The purpose was to test the hypothesis that knee effusion presence alters periarticular neuromuscular patterns during gait in individuals with moderate knee OA.

Method

40 patients with medial compartment knee OA participated after giving informed consent. Patients were assessed for the presence of effusion using a brush test and were assigned to the knee effusion (n=20) and no knee effusion (n=20) groups. Surface electrodes were placed in a bipolar configuration over the lateral and medial gastrocnemius, vastus lateralis and medialis, rectus femoris and the lateral and medial hamstrings of the affected limb. Five trials of self-selected walking were completed. Electromyograms (EMG) were collected using an AMT-8 EMG system (Bortec Inc.). An Optotrak motion capture system (Northern Digital Inc.) recorded leg motion. Euler rotations were used to derive knee angles. EMG waveforms were low-pass filtered and amplitude normalized to maximal effort voluntary isometric contractions. Quadriceps, gastrocnemius and hamstring strength was measured from torques produced against a Cybex dynamometer. Principal Component Analysis extracted the predominant waveform features and weighting scores were calculated for each measured waveform. Analysis of variance models test for main effects (group, muscle) and interactions (alpha = 0.05). Bonferonni post hoc testing was employed.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 3 - 3
1 Mar 2010
Rutherford DJ Hubley-Kozey CL Stanish WD
Full Access

Purpose: To test the null hypotheses that no significant differences in the net external knee adduction moment waveform captured during gait exist between neutral, toe in and toe out foot progression angle (FPA) modifications and between those with mild to moderate knee OA and asymptomatic control subjects.

Method: Ten patients with mild to moderate knee OA (age 45±7 years) and 16 asymptomatic control subjects (age 54±8 years) participated. Informed consent was obtained for all participants. Three-dimensional (3D) motion and ground reaction force data were recorded during gait. Five trials of each condition,

Self-selected walking (Neutral),

Toe out walking (10o> self-selected, velocity +/− 0.1 m/s of self-selected) and

Toe in walking (10o

Results: There was a significant condition effect for FPA (Neutral=7o, Toe out=24o and Toe in=−9o) and a significant group effect for walking velocity (Asymptomatic=1.46m/s, Knee OA=1.27m/s). In both groups, a toe out FPA produced

a reduction in the overall knee adduction moment (captured by PC1),

a reduction in the late stance magnitude of the knee adduction moment magnitude (captured by PC2 and PC3) and

an increase in the early stance knee adduction moment magnitude (captured by PC2) (p< 0.05).

Conclusion: The knee adduction moment is considered an indicator of medial tibio-femoral compressive loading. In this study, a toe out FPA modification during gait altered the characteristics of the knee adduction moment. A reduction in the overall magnitude, more specifically during late stance was found with the toe out gait modification. An increased initial stance peak magnitude was also found during toe out gait. This finding is novel, indicating that a greater peak medial compartment load is produced