Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 14 - 14
1 Dec 2022
Werdyani S Liu M Furey A Gao Z Rahman P Zhai G
Full Access

Osteoarthritis (OA) is the most common form of arthritis and one of the ten most disabling diseases in developed countries. Total joint replacement (TJR) is considered by far as the most effective treatment for end-stage OA patients. The majority of patients achieve symptomatic improvement following TJR. However, about 22% of the TJR patients either do not improve or deteriorate after surgery. Several potential non-genetic predictors for the TJR outcome have been investigated. However, the results were either inconclusive or had very limited predictive power. The aim of this study was to identify genetic variants for the poor outcome of TJR in primary OA patients by a genome-wide association study (GWAS).

Study participants were total knee or hip replacement patients due to primary OA who were recruited to the Newfoundland Osteoarthritis Study (NFOAS) before 2017. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) was used to assess pain and functional impairment pre- and 3.99±1.38 years post-surgery. Two non-responder classification criteria were used in our study. One was defined by an absolute WOMAC change score. Participants with a change score less than 7/20 points for pain were considered as pain non-responders; and those with less than 22/68 points for function were classified as function non-responders. The second one was the Outcome Measures in Arthritis Clinical Trials and the Osteoarthritis Research Society International (OMERACT-OARSI) criteria. Blood DNA samples were genotyped using the Illumina GWAS microarrays genotyping platform. The quality control (QC) filtering was performed on GWAS data before the association of the genetic variants with non-responders to TJR was tested using the GenABEL package in R with adjustment for the relatedness of the study population and using the commonly accepted GWAS significance threshold p < 5*10−8 to control multiple testing.

In total, 316 knee and 122 hip OA patients (mean age 65.45±7.62 years, and 58% females) passed the QC check. These study participants included 368 responders and 56 non-responders to pain, and 364 responders and 68 non-responders to function based on the absolute WOMAC point score change classification. While 377 responders and 56 non-responders to pain, and 366 responders and 71 non-responders to function were identified by the OMERACT-OARSI classification criteria. Interestingly, the same results were obtained by both classification methods, and we found that the G allele of rs4797006 was significantly associated with pain non-responders with odds ratio (OR) of 5.12 (p<7.27×10-10). This SNP is in intron one of the melanocortin receptor 5 (MC5R) gene on chr18. This gene plays central roles in immune response, pain sensitivity, and negative regulation of inflammatory response to antigenic stimulus. The A allele of rs200752023 was associated with function non-responders with OR of 4.41 (p<3.29×10-8). The SNP is located in intron three of the RNA Binding Fox-1 Homolog 3 (RBFOX3) gene on chr17 which has been associated with numerous neurological disorders.

Our data suggested that two chromosomal regions are associated with TJR poor outcomes and could be the novel targets for developing strategies to improve the outcome of the TJR.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 4 - 4
1 Mar 2021
Werdyani S Liu M Xie Z Furey A Gao Z Rahman P Zhai G
Full Access

Total joint replacement (TJR) is by far the most effective therapy for end-stage OA patients. Most of patients achieve joint pain reduction and function improvement following to TJR, however up to 22% of them either do not improve or deteriorate after surgery. The aim of this study was to identify genetic variants to be associated with poor outcome of TJR in primary OA patients by a genome-wide association approach (GWAS).

Study participants were primary OA patients from the Newfoundland Osteoarthritis Study (NFOAS) that comprised total knee or hip replacement and recruited before 2016 in St. John's, NL. DNA samples were extracted from patients' blood. Study participants completed their pre-operation and 3.99±1.38 years post-surgery outcome assessment using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). DNA samples were genotyped using the genome-wide Illumina HumanOmni2.58 genotyping microarray containing 2.4 million SNPs. Pre-association quality control filtering was conducted for the raw genotyping data using PLINK 1.7 program, and genotype imputation was performed using the IMPUTE2 algorithm with multiple population reference data from 1000 Genome Project. The imputed data with ∼3.1 million variants was used to test the association with non-responders to TJR using the additive genetic model.

Eighty three primary OA patients (44 responders and 39 non-responders) were included in the analysis. Association analysis detected three chromosomal regions on chr5, 7, and 8 to be significantly associated with non-responding to pain. The top SNPs at these loci are intergenic variants that include SNP (rs17118094, p=4.4×10-5) on chr5. This SNP is adjacent to SGCD gene that plays an important role in muscular strength and maintenance. Another associated SNP (rs71572810, p=4.7×10-5) is nearby IMMP2L gene on chr7. This gene is reported to be associated with behavioral abnormalities. Finally, SNP (rs6992938, p=5.8×10-5) on chr8 is located downstream of TRPA1 gene that is known to have a central role in the pain response to endogenous inflammatory mediators. Three loci were also found to be significantly associated with non-responding to function. The lead variant in the locus on chr1 is an intergenic SNP (rs9729377, p=1.7×10-5) falling between CTBS and MCOLN2 genes. CTBS gene is associated with TNF-α, a cytokine that stimulate the inflammation acute phase reaction, and MCOLN2 gene plays a role in the chemokine secretion and macrophage migration in the innate immune response. Other top SNPs in loci on chr2 and 10 harbor CCDC93, INSIG2, and KLF6 genes that are associated with heel bone mineral density, hypercholesterolemia, obesity and BMI.

To our knowledge, this project is the first study that investigated the association between genetic factors and TJR non-responders. Our results demonstrated that genes related to muscle strength, behavioral trait, pain response, and inflammation play a significant role in poor outcome of TJR, warranting further investigation.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 154 - 161
1 Mar 2017
Liu J Li X Zhang H Gu R Wang Z Gao Z Xing L

Objectives

Ubiquitin E3 ligase-mediated protein degradation regulates osteoblast function. Itch, an E3 ligase, affects numerous cell functions by regulating ubiquitination and proteasomal degradation of related proteins. However, the Itch-related cellular and molecular mechanisms by which osteoblast differentiation and function are elevated during bone fracture repair are as yet unknown.

Methods

We examined the expression levels of E3 ligases and NF-κB members in callus samples during bone fracture repair by quantitative polymerase chain reaction (qPCR) and the total amount of ubiquitinated proteins by Western blot analysis in wild-type (WT) mice. The expression levels of osteoblast-associated genes in fracture callus from Itch knockout (KO) mice and their WT littermates were examined by qPCR. The effect of NF-κB on Itch expression in C2C12 osteoblast cells was determined by a chromatin immunoprecipitation (ChIP) assay.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 157 - 157
1 May 2016
Zuo J Liu S Gao Z
Full Access

Objective

To three-dimensionally reconstruct the proximal femur of DDH (Developmental dysplasia of the hip) and measure the related anatomic parameters, so that we could have a further understanding of the morphological variation of the proximal femur of DDH, which would help in the preoperative planning and prosthesis design specific for DDH.

Methods

From Jan.2012 to Dec.2014, 38 patients (47 hips) of DDH were admitted and 30 volunteers (30 hips) were selected as controls. All hips from both groups were examined by CT scan and radiographs. The Crowe classification method was applied. The CT data were imported into Mimics 17.0. The three-dimensional models of the proximal femur were then reconstructed, and the following parameters were measured: neck-shaft angle, neck length, offset, height of the centre of femoral head, height of the isthmus, height of greater trochanter, the medullary canal diameter of isthmus(Di), the medullary canal diameter 10mm above the apex of the lesser trochanter(DT+10), the medullary canal diameter 20mm below the apex of the lesser trochanter(DT-20), and then DT+10/Di, DT-20/Di and DT+10/DT-20 were calculated.